Role of Electrostatic Interactions on the Transport of Druglike Molecules in Hydrogel-Based Articular Cartilage Mimics: Implications for Drug Delivery

2016 ◽  
Vol 13 (3) ◽  
pp. 819-828 ◽  
Author(s):  
Fengbin Ye ◽  
Stefania Baldursdottir ◽  
Søren Hvidt ◽  
Henrik Jensen ◽  
Susan W. Larsen ◽  
...  
Author(s):  
Hamed Hatami-Marbini ◽  
Peter M. Pinsky

The extracellular matrix (ECM) is a fibrous structure embedded in an aqueous gel. The mechanical and electrostatic interactions of the ECM constituents, i.e. collagen fibers and proteoglycans (PGs), define the structure and mechanical response of connective tissues (CTs) such as cornea and articular cartilage. Proteoglycans are complex macromolecules consisting of linear chains of repeating gylcosaminoglycans (GAGs) which are covalently attached to a core protein. PGs can be as simple as decorin with a single GAG side chain or as complex as aggrecan with many GAGs. Decorin is the simplest small leucine-rich PG and is the main PG inside the corneal stroma. It has an arch shape and links non-covalently at its concave surface to the collagen fibrils. It has been shown that while collagen fibers inside the extracellular matrix resist the tensile forces, the negatively charged glycosaminoglycans and their interaction with water give compressive stiffness to the tissue. The role of PGs in biomechanical properties of the connective tissues has mainly been studied in order to explore the behavior of articular cartilage [1], which is a CT with large and highly negatively charged PGs, aggrecans. In order to explain the role of PGs in this tissue, it is commonly assumed that their contribution to the CT elasticity is because of both the repulsive forces between negatively charged GAGs and GAG interactions with free mobile charges in the ionic bath. The electrostatic contribution to the shear and compressive stiffness of cartilage is modeled by approximating GAGs as charged rods [1]. The Poisson-Boltzmann equation is used to compute the change in electrical potential and mobile ion distributions which are caused by the macroscopic deformation.


Author(s):  
KRISHNA KUMAR ◽  
ARPITA SINGH ◽  
AMRESH GUPTA

In the history of nanotechnology, Dendrimers are rolling in as a highly tempting class of drug delivery system for cancer therapy. Dendrimers are the best and smart choice as Nanocarriers to deliver one or more therapeutic agents safely and selectively to cancer cells. Dendrimers that have remarkable properties including membrane interaction, monodispersity, well-defined size, shape and molecular weight, etc. Functional groups that are present in the Dendrimers exterior also permit other chemical moieties that can actively target certain diseases which are now widely used as tumor-targeting strategies. There are three ways by which drugs interact with dendrimers, (a) physical encapsulation, (b) electrostatic interactions, and (c) covalent conjugations. This review represents the advantages of Dendrimers over conventional chemotherapy, toxicity, and its management. The anti-cancer drugs are delivered by using Dendrimers and recent advances in drug delivery by different types of Dendrimers.


Author(s):  
Kevin M. Shakesheff ◽  
Martyn C. Davies ◽  
Clive J. Roberts ◽  
Saul J. B. Tendler ◽  
Philip M. Williams

2020 ◽  
Vol 23 (15) ◽  
Author(s):  
Ritika Puris ◽  
Chandan Sharma ◽  
Dr. Manish Goswami

2013 ◽  
Vol 20 (14) ◽  
pp. 1847-1857 ◽  
Author(s):  
Carmelo Puglia ◽  
Giorgia Tirendi ◽  
Francesco Bonina

2016 ◽  
Vol 22 (9) ◽  
pp. 1259-1273 ◽  
Author(s):  
Carolyn Jordan ◽  
Vladimir V. Shuvaev ◽  
Mark Bailey ◽  
Vladimir R. Muzykantov ◽  
Thomas D. Dziubla

2019 ◽  
Vol 24 (44) ◽  
pp. 5296-5312 ◽  
Author(s):  
Fakhara Sabir ◽  
Rai K. Farooq ◽  
Asim.ur.Rehman ◽  
Naveed Ahmed

Monocytes are leading component of the mononuclear phagocytic system that play a key role in phagocytosis and removal of several kinds of microbes from the body. Monocytes are bone marrow precursor cells that stay in the blood for a few days and migrate towards tissues where they differentiate into macrophages. Monocytes can be used as a carrier for delivery of active agents into tissues, where other carriers have no significant access. Targeting monocytes is possible both through passive and active targeting, the former one is simply achieved by enhanced permeation and retention effect while the later one by attachment of ligands on the surface of the lipid-based particulate system. Monocytes have many receptors e.g., mannose, scavenger, integrins, cluster of differentiation 14 (CD14) and cluster of differentiation 36 (CD36). The ligands used against these receptors are peptides, lectins, antibodies, glycolipids, and glycoproteins. This review encloses extensive introduction of monocytes as a suitable carrier system for drug delivery, the design of lipid-based carrier system, possible ways for delivery of therapeutics to monocytes, and the role of monocytes in the treatment of life compromising diseases such as cancer, inflammation, stroke, etc.


2020 ◽  
Vol 21 (5) ◽  
pp. 330-338
Author(s):  
Luming Wu ◽  
Yuan Ding ◽  
Shiqiang Han ◽  
Yiqing Wang

Background: Exosomes are extracellular vesicles (EVs) released from cells upon fusion of an intermediate endocytic compartment with the plasma membrane. They refer to the intraluminal vesicles released from the fusion of multivesicular bodies with the plasma membrane. The contents and number of exosomes are related to diseases such as metabolic diseases, cancer and inflammatory diseases. Exosomes have been used in neurological research as a drug delivery tool and also as biomarkers for diseases. Recently, exosomes were observed in the seminal plasma of the one who is asthenozoospermia, which can affect sperm motility and capacitation. Objective: The main objective of this review is to deeply discuss the role of exosomes in spermatozoa after leaving the seminiferous tubule. Methods: We conducted an extensive search of the literature available on relationships between exosomes and exosomes in spermatozoa on the bibliographic database. Conclusion: : This review thoroughly discussed the role that exosomes play in the exchange of spermatozoa after leaving the seminiferous tubule and its potential as a drug delivery tool and biomarkers for diseases as well.


Sign in / Sign up

Export Citation Format

Share Document