High-Performance Wearable Strain Sensor Based on Graphene/Cotton Fabric with High Durability and Low Detection Limit

2019 ◽  
Vol 12 (1) ◽  
pp. 1474-1485 ◽  
Author(s):  
Yanjun Zheng ◽  
Yilong Li ◽  
Yujie Zhou ◽  
Kun Dai ◽  
Guoqiang Zheng ◽  
...  
Nanomaterials ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 889
Author(s):  
Lu Liu ◽  
Libo Wang ◽  
Xuqing Liu ◽  
Wenfeng Yuan ◽  
Mengmeng Yuan ◽  
...  

Flexible and comfortable wearable electronics are as a second skin for humans as they can collect the physiology of humans and show great application in health and fitness monitoring. MXene Ti3C2Tx have been used in flexible electronic devices for their unique properties such as high conductivity, excellent mechanical performance, flexibility, and good hydrophilicity, but less research has focused on MXene-based cotton fabric strain sensors. In this work, a high-performance wearable strain sensor composed of two-dimensional (2D) MXene d-Ti3C2Tx nanomaterials and cotton fabric is reported. Cotton fabrics were selected as substrate as they are comfortable textiles. As the active material in the sensor, MXene d-Ti3C2Tx exhibited an excellent conductivity and hydrophilicity and adhered well to the fabric fibers by electrostatic adsorption. The gauge factor of the MXene@cotton fabric strain sensor reached up to 4.11 within the strain range of 15%. Meanwhile, the sensor possessed high durability (>500 cycles) and a low strain detection limit of 0.3%. Finally, the encapsulated strain sensor was used to detect subtle or large body movements and exhibited a rapid response. This study shows that the MXene@cotton fabric strain sensor reported here have great potential for use in flexible, comfortable, and wearable devices for health monitoring and motion detection.


2020 ◽  
Vol 49 (11) ◽  
pp. 3423-3433 ◽  
Author(s):  
Khushboo Iman ◽  
M. Shahid ◽  
Musheer Ahmad

A novel discrete Na{Cu12Zn4} unit is discovered with the ability to sense calcium ions (with ultra-low detection limit) as well as to adsorb cationic dyes in the aqueous phase with high performance.


2021 ◽  
Author(s):  
Lu Liu ◽  
Libo Wang ◽  
Xuqing Liu ◽  
Wenfeng Yuan ◽  
Mengmeng Yuan ◽  
...  

Abstract Although 2D nanomaterials such as MXene Ti3C2Tx have been used in flexible electronic devices for their unique properties such as high conductivity, excellent mechanical performance, flexibility, and good hydrophilicity, less research has focused on of MXene-based cotton fabric strain sensors. Moreover, fabrication of wearable strain sensors with a low cost, high sensitivity, good biocompatibility, and broad sensing range is still a challenge. In this work, a high-performance wearable strain sensor composed of 2D MXene d-Ti3C2Tx nanomaterials and cotton fabric is reported. As the active material in the sensor, MXene d-Ti3C2Tx exhibited an excellent conductivity and hydrophilicity and adhered well to the fabric fibers by electrostatic adsorption. Due to the unique structure of the fabric substrate and the properties of MXene sheets, the fabricated pressure sensor achieved a high sensitivity. The gauge factor of the MXene@cotton fabric strain sensor reached up to 4.11 within the strain range of 15 %. Meanwhile, the sensor possessed high durability (>500 cycles) and a low strain detection limit of 0.3%. Finally, the encapsulated strain sensor was used to detect subtle or large body movements and exhibited a rapid response. This study shows that the MXene@cotton fabric strain sensor reported here have great potential for use in flexible, comfortable, and wearable devices for health monitoring and motion detection.


Author(s):  
Yu Ma ◽  
Jiaqi Wang ◽  
Yi Liu ◽  
Shiguo Han ◽  
Yaobin Li ◽  
...  

Self-powered photodetection with an extremely low detection limit of 82 nW cm−2 is achieved in a 2D hybrid perovskite ferroelectric. This result sheds light on future advances of ferroelectrics toward smart optoelectronic device applications.


RSC Advances ◽  
2015 ◽  
Vol 5 (123) ◽  
pp. 101760-101767 ◽  
Author(s):  
Zhenyu Chu ◽  
Hongxin Sun ◽  
He Xu ◽  
Jiao Zhou ◽  
Guo Zhang ◽  
...  

The 3D porous α-Ni(OH)2/carbon black nanostructure composites were fabricated via a simple refluxing method using SDBS as the template. The composites exhibited excellent sensing properties with fast response and low detection limit of NO2 at room temperature.


Nanomaterials ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 1714 ◽  
Author(s):  
Weiping Liu ◽  
Ximing Zhang ◽  
Zhaofeng Wang ◽  
Ruijian Wang ◽  
Chen Chen ◽  
...  

Cd/In-glycerate spheres are synthesized through a simple solvothermal method. After thermal treatment, these Cd/In-glycerates can be converted into CdIn2O4 spheres. Many characterization methods were performed to reveal the microstructure and morphology of the CdIn2O4. It was found that pure CdIn2O4 phase was obtained for the Cd/In starting materials at ratios of 1:1.6. The CdIn2O4 spheres are composed by a large number of nanoparticles subunits. The CdIn2O4 sphere-based sensor exhibited a low detection limit (1 ppm), high response (81.20 to 500 ppm n-butanol), fast response (4 s) and recovery (10 s) time, good selectivity, excellent repeatability, and stability at 280 °C. Our findings highlight the possibility to develop a novel gas sensor based on CdIn2O4 for application in n-butanol detection with high performance.


Author(s):  
J. J. Domanski ◽  
P. L. Haire ◽  
T.J. Sheets

AbstractAverage residue Ievels of DDT + TDE in flue-cured tobacco decreased from 6.1 ppm in 1970 to 0.85 ppm in 1972. DDT + TDE residues in Burley also dropped sharply from previous levels. In 1972 one sample from Kentucky contained 8.17 ppm; all other Burley samples were less than 0.25 ppm. DDT + TDE residues also declined in fire-cured and air-cured types; of these samples Tennessee dark air-cured tobacco contained the highest average residue (3.5 ppm of DDT + TDE). In 1972 over 90 % of the flue-cured samples were positive for toxaphene. Since each of our samples was a composite of tobacco from 10 farmers, we cannot conclude from this result that 90 % of the individual piles contained toxaphene. Significant amounts of toxaphene were found in other types also; for example, 50 % of the 1972 Burley samples had toxaphene concentrations greater than 0.5 ppm. Average endosulfan levels decreased between 1970 and 1972 in flue-cured and Burley tobaccos. However, in all of the dark air and dark fire-cured samples from Tennessee endosulfan residues exceeded 5 ppm. Average endrin residues were at or near the low detection limit in alI samples except fire-cured and dark air-cured tobacco from Tennessee; these averaged 0.26 and 0.17 ppm, respectively.


Sign in / Sign up

Export Citation Format

Share Document