A High-Throughput Glycosyltransferase Inhibition Assay for Identifying Molecules Targeting Fucosylation in Cancer Cell-Surface Modification

2019 ◽  
Vol 14 (4) ◽  
pp. 715-724 ◽  
Author(s):  
Xiaohua Zhang ◽  
Fei Chen ◽  
Alessandro Petrella ◽  
Franklin Chacón-Huete ◽  
Jason Covone ◽  
...  
1992 ◽  
Vol 68 (06) ◽  
pp. 662-666 ◽  
Author(s):  
W Hollas ◽  
N Hoosein ◽  
L W K Chung ◽  
A Mazar ◽  
J Henkin ◽  
...  

SummaryWe previously reported that extracellular matrix invasion by the prostate cancer cell lines, PC-3 and DU-145 was contingent on endogenous urokinase being bound to a specific cell surface receptor. The present study was undertaken to characterize the expression of both urokinase and its receptor in the non-invasive LNCaP and the invasive PC-3 and DU-145 prostate cells. Northern blotting indicated that the invasive PC-3 cells, which secreted 10 times more urokinase (680 ng/ml per 106 cells per 48 h) than DU-145 cells (63 ng/ml per 106 cells per 48 h), had the most abundant transcript for the plasminogen activator. This, at least, partly reflected a 3 fold amplification of the urokinase gene in the PC-3 cells. In contrast, urokinase-specific transcript could not be detected in the non-invasive LNCaP cells previously characterized as being negative for urokinase protein. Southern blotting indicated that this was not a consequence of deletion of the urokinase gene. Crosslinking of radiolabelled aminoterminal fragment of urokinase to the cell surface indicated the presence of a 51 kDa receptor in extracts of the invasive PC-3 and DU-145 cells but not in extracts of the non-invasive LNCaP cells. The amount of binding protein correlated well with binding capacities calculated by Scatchard analysis. In contrast, the steady state level of urokinase receptor transcript was a poor predictor of receptor display. PC-3 cells, which were equipped with 25,000 receptors per cell had 2.5 fold more steady state transcript than DU-145 cells which displayed 93,000 binding sites per cell.


2019 ◽  
Vol 25 (1) ◽  
pp. 9-20 ◽  
Author(s):  
Olivia W. Lee ◽  
Shelley Austin ◽  
Madison Gamma ◽  
Dorian M. Cheff ◽  
Tobie D. Lee ◽  
...  

Cell-based phenotypic screening is a commonly used approach to discover biological pathways, novel drug targets, chemical probes, and high-quality hit-to-lead molecules. Many hits identified from high-throughput screening campaigns are ruled out through a series of follow-up potency, selectivity/specificity, and cytotoxicity assays. Prioritization of molecules with little or no cytotoxicity for downstream evaluation can influence the future direction of projects, so cytotoxicity profiling of screening libraries at an early stage is essential for increasing the likelihood of candidate success. In this study, we assessed the cell-based cytotoxicity of nearly 10,000 compounds in the National Institutes of Health, National Center for Advancing Translational Sciences annotated libraries and more than 100,000 compounds in a diversity library against four normal cell lines (HEK 293, NIH 3T3, CRL-7250, and HaCat) and one cancer cell line (KB 3-1, a HeLa subline). This large-scale library profiling was analyzed for overall screening outcomes, hit rates, pan-activity, and selectivity. For the annotated library, we also examined the primary targets and mechanistic pathways regularly associated with cell death. To our knowledge, this is the first study to use high-throughput screening to profile a large screening collection (>100,000 compounds) for cytotoxicity in both normal and cancer cell lines. The results generated here constitute a valuable resource for the scientific community and provide insight into the extent of cytotoxic compounds in screening libraries, allowing for the identification and avoidance of compounds with cytotoxicity during high-throughput screening campaigns.


Langmuir ◽  
2009 ◽  
Vol 25 (12) ◽  
pp. 6985-6991 ◽  
Author(s):  
Sonny C. Hsiao ◽  
Betty J. Shum ◽  
Hiroaki Onoe ◽  
Erik S. Douglas ◽  
Zev J. Gartner ◽  
...  

1982 ◽  
Vol 208 (1) ◽  
pp. 239-242 ◽  
Author(s):  
D C Wraith ◽  
C J Chesterton

Current evidence suggests that the major cell-surface modification occurring during mammalian erythropoiesis could be generated by two separate mechanisms: either selective loss of membrane proteins during enucleation or endocytosis at the subsequent reticulocyte and erythrocyte stages. The former idea was tested by collecting developing rabbit erythroid cells before and after the enucleation step and comparing their cell-surface protein composition via radiolabelling and electrophoresis. Few changes were observed. Our data thus lend support to the endocytosis mechanism.


2003 ◽  
Vol 92 (5) ◽  
pp. 234-241 ◽  
Author(s):  
D. James Morré ◽  
Dorothy M. Morré ◽  
Howard Sun ◽  
Raymond Cooper ◽  
Joseph Chang ◽  
...  

Author(s):  
Madheswaran Suresh ◽  
Malarvizhi Gurusamy ◽  
Natarajan Sudhakar

<p>Immune surveillance is a mechanism where cells and tissues are watched constantly by ever alerted immune system. Most incipient cancer cells are recognized and eliminated by the immune surveillance mechanism, but still tumors have the ability to evade immune surveillance and immunological killing. One greater arm that tumor use to evade immune surveillance, is by expressing anti-phagocytic signal (CD47). Here we present a provocative hypothesis where cancer cells are removed alive by phagocytic cell (DC). That in turn will elicit effective and higher immunogenic condition. All this could be possible by addition pro-phagocytic signal (PtdSer) over cancer cell surface (Breast Cancer), that mask the presence of anti-phagocytic signal (CD47). In other words, adding eat me signal (PtdSer) over the breast cancer cell surface that mask the presence of don’t eat me signal or anti-phagocytic signal present in breast cancer cell surface. This could be possible by using bi-specific antibody, conjugated to PEG-modified liposomes, which carry (PtdSer) pro-phagocytic signal (or) eat me signal, which target both CD47 and EGFRVIII on breast carcinoma. The simultaneous masking of anti-phagocytic signal, and adding of pro–phagocytic signal over cancer cell, will enhance the phagocytic clearance of live tumor cell and elicit immunological killing.</p>


Sign in / Sign up

Export Citation Format

Share Document