Electrochemical Analysis of High-Performance Flow-Electrode Capacitive Mixing (F-CapMix) under Different Operating Conditions

Author(s):  
Hanki Kim ◽  
Jiyeon Choi ◽  
Namjo Jeong ◽  
Hye-Ji Im ◽  
Jeong-gu Yeo ◽  
...  
1985 ◽  
Vol 65 (2) ◽  
pp. 285-298 ◽  
Author(s):  
J. E. KRUGER ◽  
B. A. MARCHYLO

Chromatographic conditions were optimized and three commercially available columns were evaluated for separation of alcohol-soluble storage proteins of Neepawa wheat using reversed-phase high-performance liquid chromatography (RP-HPLC). Optimal separation was achieved using an extracting solution of 50% 1-propanol, 1% acetic acid, and 4% dithiothreitol and an HPLC elution time of 105 min at a flow rate of 1.0 mL/min. HPLC columns evaluated (SynChropak RP-P, Ultrapore RPSC and Aquapore RP-300) varied in selectivity and resolution. The column providing the greatest versatility was Aquapore RP-300 available in cartridge form. Sodium dodecyl sulfate gradient-gel electrophoresis analysis of protein peaks resolved by RP-HPLC indicated that many of the eluted peaks contained more than one protein species. Chromatographic protein patterns obtained for Neepawa wheat grown at different locations and in different years were qualitatively the same.Key words: Protein, high-performance liquid chromatography, wheat


2006 ◽  
Vol 129 (2) ◽  
pp. 226-234
Author(s):  
Robert Hendron ◽  
Mark Eastment ◽  
Ed Hancock ◽  
Greg Barker ◽  
Paul Reeves

Building America (BA) partner McStain Neighborhoods built the Discovery House in Loveland, CO, with an extensive package of energy-efficient features, including a high-performance envelope, efficient mechanical systems, a solar water heater integrated with the space-heating system, a heat-recovery ventilator (HRV), and ENERGY STAR appliances. The National Renewable Energy Laboratory (NREL) and Building Science Consortium conducted short-term field-testing and building energy simulations to evaluate the performance of the house. These evaluations are utilized by BA to improve future prototype designs and to identify critical research needs. The Discovery House building envelope and ducts were very tight under normal operating conditions. The HRV provided fresh air at a rate of about 35L∕s(75cfm), consistent with the recommendations of ASHRAE Standard 62.2. The solar hot water system is expected to meet the bulk of the domestic hot water (DHW) load (>83%), but only about 12% of the space-heating load. DOE-2.2 simulations predict whole-house source energy savings of 54% compared to the BA Benchmark (Hendron, R., 2005 NREL Report No. 37529, NREL, Golden, CO). The largest contributors to energy savings beyond McStain’s standard practice are the solar water heater, HRV, improved air distribution, high-efficiency boiler, and compact fluorescent lighting package.


2021 ◽  
Vol 1 (3) ◽  
pp. 53-61
Author(s):  
S.G. Dragomirov ◽  
◽  
P.Ig. Eydel ◽  
A.Yu. Gamayunov ◽  
M.S. Dragomirov ◽  
...  

The article describes the results of a study of the physicochemical characteristics of solid particles of contaminants present in the coolant of automobile and tractor engines. The data on the fractional, physical and chemical composition of solid particles of contamination are given. It was established that the generalized reason for the appearance of contaminants of various nature in liquid cooling systems of engines is the physicochemical interaction of the coolant (antifreeze) with different elements and dissimilar materials of the cooling system. The use of absolutely pure coolant in the cooling systems of automobile and tractor engines is practically unrealistic, since there will always be operating conditions that contribute to the formation of contamination. A number of chemical elements (in an amount from 1 to 47% of each element) were found in the composition of solid particles of coolant contaminants: iron Fe, silicon Si, aluminum Al, lead Pb, tin Sn, zinc Zn, calcium Ca, magnesium Mg, copper Cu. In addition, at a level of less than 1.0% (wt.), Such chemical elements as potassium K, sodium Na, titanium Ti, phosphorus P, sulfur S, chromium Cr, molyb-denum Mo, chlorine Cl, iridium Ir, nickel Ni, manganese Mn, etc. were found. The most dangerous contaminants are particles of iron Fe and silicon Si, contained in the coolant in an amount of up to 47 and 37%, respectively, and possessing significant hardness and angularity. The abrasive proper-ties of Fe and Si particles create the danger of removing a thin oxide film on the inner surface of the walls of the cooling radiator channels, leading to their premature destruction. In this regard, it is concluded that high-performance engine coolant filters should be used in automobiles and tractors to remove these contaminants from the flow.


Author(s):  
Robert Hendron ◽  
Mark Eastment ◽  
Ed Hancock ◽  
Greg Barker ◽  
Paul Reeves

Building America (BA) partner McStain Neighborhoods built the Discovery House in Loveland, Colorado, with an extensive package of energy-efficient features, including a high-performance envelope, efficient mechanical systems, a solar water heater integrated with the space-heating system, a heat-recovery ventilator (HRV), and ENERGY STAR™ appliances. The National Renewable Energy Laboratory (NREL) and Building Science Consortium (BSC) conducted short-term field-testing and building energy simulations to evaluate the performance of the house. These evaluations are utilized by BA to improve future prototype designs and to identify critical research needs. The Discovery House building envelope and ducts were very tight under normal operating conditions. The HRV provided fresh air at a rate of about 75 cfm (35 l/s), consistent with the recommendations of ASHRAE Standard 62.2. The solar hot water system is expected to meet the bulk of the domestic hot water (DHW) load (>83%), but only about 12% of the space-heating load. DOE-2.2 simulations predict whole-house source energy savings of 54% compared to the BA Benchmark [1]. The largest contributors to energy savings beyond McStain’s standard practice are the solar water heater, HRV, improved air distribution, high-efficiency boiler, and compact fluorescent lighting package.


2016 ◽  
Vol 20 (suppl. 2) ◽  
pp. 393-406 ◽  
Author(s):  
Vlado Porobic ◽  
Evgenije Adzic ◽  
Milan Rapaic

Hardware-in-the-Loop (HIL) emulation is poised to become unsurpassed design tool for development, testing, and optimization of real-time control algorithms for grid connected power electronics converters for distributed generation, active filters and smart grid applications. It is strongly important to examine and test how grid connected converters perform under different operating conditions including grid disturbances and faults. In that sense, converter?s controller is a key component responsible for ensuring safe and high-performance operation. This paper demonstrates an example how ultra-low latency and high fidelity HIL emulator is used to easily, rapidly and exhaustively test and validate standard control strategy for grid connected power electronics converters, without need for expensive hardware prototyping and laboratory test equipment.


Author(s):  
Babitha S ◽  
Mr. Hemanth Naidu K J ◽  
Mr. Ashwin Goutham G ◽  
Mr. Harshith S V

Portable electronic devices mostly used battery as their primary source for operation hence longer running batteries or Power resources or vital for any portable device need for stable voltage supplies have led to the development of low dropout voltage regulators low dropout regulators provide stable regulated output voltage in various operating conditions which makes it useful in portable devices that design of high performance and stable low dropout voltage regulator is a challenge nowadays with decreasing device size and increasing power densities. The proposed circuit used a 5pack architecture of error amplifier. This paper proposes the study of behavior of the LDO voltage regulator with internal capacitors i.e., capless. The regulated voltage of 1.8V is obtained using the typical power supply of 2.2V obtained dropout voltage of 400mv with the delay of 12.77micro sec, power consumed 1.816W. The proposed design produced DC gain of 31.77db,with the load current variation of 0 to 20mA. The capless LDO architecture is verified in the Cadence 180nm technology. The architecture provides a stable gain and plot for both Temperature and Load Variations. The stability issues are overcome using the compensation techniques which uses a current amplifier and a capacitor in the differentiator configuration. The current amplifier implemented uses current mirror with current copying ratio of unity.


Author(s):  
Mohammad Rustam M. L. ◽  
F. Danang Wijaya

Under various external conditions, grid connected PV system performance is strongly affected by the topology that is used to connect a PV system with grid. This research aims to design a multistring based converter topology for three-phase grid connected 200 kW PV system that has a high performance in various operating conditions. Research was done by a simulation method using Matlab-Simulink with performance being evaluated including the generated power, efficiency, power quality in accordance with grid requirements, as well as the power flow. In the simulation, multistring converter topology was designed using two dc-dc boost multistring converters connected in parallel to a centralized of three-phase three-level NPC inverter with the size of the string being shorter and more parallel strings as well as the maximum voltage of the PV array of 273.5 V close to dc voltage reference of 500 V. Each dc-dc boost multistring converter have individual MPPT controllers. The simulation results showed that this multistring converter topology had a high performance in various operating conditions. This due to more power generated by the NPC inverter (> 190 kW) at the time of high power generation on the STC conditions (1000 W/m2, 25 oC), the lowest efficiency of the total system is 95.08 % and the highest efficiency of the total system is 99.4 %, the quality of the power generated in accordance with the requirements of grid, as well as the inverter put more active power to the grid and less reactive power to the grid. The response of the inverter slightly worse for loads with greater reactive power and unbalanced.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
André Weber

Abstract Solid Oxide Cells (SOCs) have gained an increasing interest as electrochemical energy converters due to their high efficiency, fuel flexibility and ability of reversible fuel cell/electrolysis operation. During the development process as well as in quality assurance tests, the performance of single cells and cell stacks is commonly evaluated by means of current/voltage- (CV-) characteristics. Despite of the fact that the measurement of a CV-characteristic seems to be simple compared to more complex, dynamic methods as electrochemical impedance spectroscopy or current interrupt techniques, the resulting performance strongly depends on the test setup and the chosen operating conditions. In this paper, the impact of different single cell testing environments and operating conditions on the CV-characteristic of high performance cells is discussed. The influence of cell size, contacting and current collection, contact pressure, fuel flow rate and composition on the achievable cell performance is presented and limitations arising from the test bed and testing conditions will be pointed out. As today’s high performance cells are capable of delivering current densities of several ampere per cm2 a special emphasis will be laid on single cell testing in this current range.


Author(s):  
Qingqing Cheng ◽  
Shuai Yang ◽  
Cehuang Fu ◽  
Liang-Liang Zou ◽  
Zhi-Qing Zou ◽  
...  

High-loaded oxygen reduction reaction (ORR) Pt intermetallic compounds with high performance expression under PEMFC operating conditions are prerequisite for practical application. Nevertheless, high metal-loading would lead to the severe agglomeration...


Sign in / Sign up

Export Citation Format

Share Document