Cathepsin B-Labile Dipeptide Linkers for Lysosomal Release of Doxorubicin from Internalizing Immunoconjugates:  Model Studies of Enzymatic Drug Release and Antigen-Specific In Vitro Anticancer Activity

2002 ◽  
Vol 13 (4) ◽  
pp. 855-869 ◽  
Author(s):  
Gene M. Dubowchik ◽  
Raymond A. Firestone ◽  
Linda Padilla ◽  
David Willner ◽  
Sandra J. Hofstead ◽  
...  
2020 ◽  
Vol 11 (4) ◽  
pp. 11905-11919

Despite the recent advances and development of conventional cancer therapy strategies, treatments often lack specificity, resulting in low therapeutic efficiency, cancer recurrence, and drug resistance. With the advent of nanotechnology, nanoparticle-based delivery systems have steadily gained interest. The key to using any drug delivery system is its’ relative cytotoxicity, pharmacokinetics, and downstream immunological effects that may arise upon repetitive exposure. Among the nanoparticle systems, mesoporous silica nanoparticles (MSNs) have received favorable attention as potential drug delivery platforms. This study aimed to synthesize and functionalized MSNs with chitosan and polyethyleneglycol for improved stability, efficient drug loading, and drug release. These polymerized MSNs were physicochemically and morphologically characterized and assessed for their dual-drug [doxorubicin (DOX)/5-fluoruracil (5-FU)] loading, drug release kinetics, and anticancer activity in vitro. MSNs ranged from 35-70 nm in size, with a high surface area (809.44 m²/g) and a large pore volume (1.74 cm²/g). The DOX/5-FU co-loading produced a potent dual-drug formulation with good pH-responsive release profiles, high percentage release, especially from PEGylated MSNs, and significant anticancer activity the breast adenocarcinoma (MCF-7) and cervical cancer (HeLa) cells. This combination therapy's favorable outcomes suggest an improved therapeutic strategy that warrants investigation in an in vivo model.


1988 ◽  
Vol 53 (5) ◽  
pp. 1078-1085 ◽  
Author(s):  
Karel Ulbrich ◽  
Olga Nazarova ◽  
Eugenii Panarin ◽  
Miroslav Baudyš ◽  
Michail V. Solovskii

It has been shown in recent years that copolymers of N-(2-hydroxypropyl)methacrylamide may be used as targeted polymer drug carriers. The wide-spectrum antibiotic chloramphenicol has been bound to these carriers by means of biodegradable oligopeptidic sequences. The rate of drug release from the carrier in aqueous buffer solutions pH 7·4 and 6·0 was measured and the rates were compared with that of the enzymatic drug release from the carrier by means of the enzyme Cathepsin B. It was shown that the active drug may be released from the carrier by simple hydrolysis or by acting with an enzyme and that the rate of drug release depends on the structure of the oligopeptidic sequence which acts as a link between the drug and the polymer. The results obtained may be employed in the synthesis of a polymer compound potentially possessing antimicrobial activity.


1995 ◽  
Vol 74 (03) ◽  
pp. 868-873 ◽  
Author(s):  
Silvana Arrighi ◽  
Roberta Rossi ◽  
Maria Giuseppina Borri ◽  
Vladimir Lesnikov ◽  
Marina Lesnikov ◽  
...  

SummaryTo improve the safety of plasma derived factor VIII (FVIII) concentrate, we introduced a final super heat treatment (100° C for 30 min) as additional virus inactivation step applied to a lyophilized, highly purified FVIII concentrate (100 IU/mg of proteins) already virus inactivated using the solvent/detergent (SID) method during the manufacturing process.The efficiency of the super heat treatment was demonstrated in inactivating two non-lipid enveloped viruses (Hepatitis A virus and Poliovirus 1). The loss of FVIII procoagulant activity during the super heat treatment was of about 15%, estimated both by clotting and chromogenic assays. No substantial changes were observed in physical, biochemical and immunological characteristics of the heat treated FVIII concentrate in comparison with those of the FVIII before heat treatment.


Author(s):  
Neeraj Agrawal ◽  
M.J. Chandrasekar ◽  
U.V. Sara ◽  
Rohini A.

A macromolecular prodrug of didanosine (ddI) for oral administration was synthesized and evaluated for in-vitro drug release profile. Didanosine was first coupled to 2-hydroxy ethyl methacrylate (HEMA) through a succinic spacer to form HEMA-Suc-ddI monomeric conjugate which was subsequently polymerized to yield Poly(HEMA-Suc-ddI) conjugate. The structures of the synthesized compounds were characterized by FT-IR, Mass and 1H-NMR spectroscopy. The prodrug was subjected for in-vitro drug release studies in buffers of pH 1.2 and 7.4 mimicking the upper and lower GIT. The results showed that the drug release from the polymeric backbone takes place in a sustained manner over a period of 24 h and the amount of drug released was comparatively higher at pH 7.4 indicating that the drug release takes place predominantly at the alkaline environment of the lower GIT rather than at the acidic environment of the upper GIT. This pH dependent sustained drug release behavior of the prodrug may be capable of reducing the dose limiting toxicities by maintaining the plasma drug level within the therapeutic range and increasing t1/2 of ddI. Moreover, the bioavailability of the drug should be improved as the prodrug releases ddI predominantly in the alkaline environment which will reduce the degradation of ddI in the stomach acid.


Author(s):  
Pravin Patil ◽  
Anil Sharma ◽  
Subhash Dadarwal ◽  
Vijay Sharma

The objective of present investigation was to enhance brain penetration of Lamivudine, one of the most widely used drugs for the treatment of AIDS. This was achieved through incorporating the drug into solid lipid nanoparticles (SLN) prepared by using emulsion solvent diffusion technique. The formulations were characterized for surface morphology, size and size distribution, percent drug entrapment and drug release. The optimum rotation speed, resulting into better drug entrapment and percent yield, was in the range of 1000-1250 r/min. In vitro cumulative % drug release from optimized SLN formulation was found 40-50 % in PBS (pH-7.4) and SGF (pH-1.2) respectively for 10 h. After 24 h more than 65 % of the drug was released from all formulations in both mediums meeting the requirement for drug delivery for prolong period of time.


Author(s):  
Dillip Kumar Behera ◽  
Kampal Mishra ◽  
Padmolochan Nayak

In this present work, chitosan (CS) crosslink with polyaniline (PANI) with montmorilonite (MMT) called as (CSPANI/MMT) and CS crosslink with PANI without MMT called as (CS-PANI) were prepared by employing the solution casting method. Further the formation of nanocomposites CS-PANI/MMT and CS-PANI were investigated using XRD, FTIR, SEM and tensile strength. Water uptake and swelling ratio of the CS-PANI and CS-PANI/MMT were found to decrease with increase in concentration of clay. Mechanical properties of the CS-PANI and CS-PANI/MMT were assessed in terms of tensile strength and extensibility using texture analyzer. Increase in tensile strength and reduction in extensibility was reported with increase in the nanoclay content. In vitro drug release study on CS-PANI and CS-PANI/MMT indicated pronounced sustained release of doxorubicin by the incorporation of clay particles in the CS polymer matrix. Overall CSPANI/MMT nanocomposite films exhibited improved mechanical and sustained drug release properties than CS-PANI.


The role of vitamin D is implicated in carcinogenesis through numerous biological processes like induction of apoptosis, modulation of immune system inhibition of inflammation and cell proliferation and promotion of cell differentiation. Its use as additional adjuvant drug with cancer treatment may be novel combination for improved outcome of different cancers. Numerous preclinical, epidemiological and clinical studies support the role of vitamin D as an anticancer agent. Anticancer properties of vitamin D have been studied widely (both in vivo and in vitro) among various cancers and found to have promising results. There are considerable data that indicate synergistic potential of calcitriol and antitumor agents. Possible mechanisms for modulatory anticancer activity of vitamin D include its antiproliferative, prodifferentiating, and anti-angiogenic and apoptic properties. Calcitriol reduces invasiveness and metastatic potential of many cancer cells by inhibiting angiogenesis and regulating expression of the key molecules involved in invasion and metastasis. Anticancer activity of vitamin D is synergistic or additive with the antineoplastic actions of several drugs including cytotoxic chemotherapy agents like paclitaxel, docetaxel, platinum base compounds and mitoxantrone. Benefits of addition of vitamin D should be weighed against the risk of its toxicity.


Sign in / Sign up

Export Citation Format

Share Document