Bioconversion of Unsaturated Fatty Acids to Value-Added Products

Author(s):  
Ching T. Hou
LWT ◽  
2021 ◽  
pp. 111925
Author(s):  
Rodica Mărgăoan ◽  
Aslı Özkök ◽  
Şaban Keskin ◽  
Nazlı Mayda ◽  
Adriana Cristina Urcan ◽  
...  

2020 ◽  
Vol 21 (6) ◽  
pp. 2106
Author(s):  
Yan Zhang ◽  
Hui Wang ◽  
Ruigang Yang ◽  
Lihao Wang ◽  
Guanpin Yang ◽  
...  

Eukaryotic filamentous yellow-green algae from the Tribonema genus are considered to be excellent candidates for biofuels and value-added products, owing to their ability to grow under autotrophic, mixotrophic, and heterotrophic conditions and synthesize large amounts of fatty acids, especially unsaturated fatty acids. To elucidate the molecular mechanism of fatty acids and/or establish the organism as a model strain, the development of genetic methods is important. Towards this goal, here, we constructed a genetic transformation method to introduce exogenous genes for the first time into the eukaryotic filamentous alga Tribonema minus via particle bombardment. In this study, we constructed pSimple-tub-eGFP and pEASY-tub-nptⅡ plasmids in which the green fluorescence protein (eGFP) gene and the neomycin phosphotransferase Ⅱ-encoding G418-resistant gene (nptⅡ) were flanked by the T. minus-derived tubulin gene (tub) promoter and terminator, respectively. The two plasmids were introduced into T. minus cells through particle-gun bombardment under various test conditions. By combining agar and liquid selecting methods to exclude the pseudotransformants under long-term antibiotic treatment, plasmids pSimple-tub-eGFP and pEASY-tub- nptⅡ were successfully transformed into the genome of T. minus, which was verified using green fluorescence detection and the polymerase chain reaction, respectively. These results suggest new possibilities for efficient genetic engineering of T. minus for future genetic improvement.


2021 ◽  
Author(s):  
Matthew Donald Hinnecke

Due to the exponential growth of the human population and declining environmental quality in the world, waste derived volatile fatty acids (VFAs) have been identified as a source for the production of value-added products. Throughout this paper, different technologies for the production of value-added products from VFAs, various high content VFA waste streams and value-added products from each process will be discussed. Additionally, an in-depth literature review will be conducted on 5 value added products from VFAs. Highlights of various experiments will be identified as well as common trends in experiments to date. Some considerations will also be given to particular strategies and methods which may enhance the production of a value-added product in the future. Even through the uncertainty it has been proven that waste derived VFAs are a major candidate in contributing to a more environmentally and sustainable society in the immediate future.


2021 ◽  
Author(s):  
Matthew Donald Hinnecke

Due to the exponential growth of the human population and declining environmental quality in the world, waste derived volatile fatty acids (VFAs) have been identified as a source for the production of value-added products. Throughout this paper, different technologies for the production of value-added products from VFAs, various high content VFA waste streams and value-added products from each process will be discussed. Additionally, an in-depth literature review will be conducted on 5 value added products from VFAs. Highlights of various experiments will be identified as well as common trends in experiments to date. Some considerations will also be given to particular strategies and methods which may enhance the production of a value-added product in the future. Even through the uncertainty it has been proven that waste derived VFAs are a major candidate in contributing to a more environmentally and sustainable society in the immediate future.


2020 ◽  
Vol 13 (12) ◽  
pp. 2156-2171
Author(s):  
Leonardo Setti ◽  
Seyedeh Parya Samaei ◽  
Irene Maggiore ◽  
Lorenzo Nissen ◽  
Andrea Gianotti ◽  
...  

AbstractHemp (Cannabis sativa L.) seeds are considered a nutritional powerhouse, rich in proteins and unsaturated fatty acids. The market for hemp seed food products is growing, due to the loosening of constraints in industrial cultivation. During the food processing chain, the external part of the seed is discarded, although it contains a significant amount of proteins. Converting this material into value-added products with a biorefinery approach could meet the ever-increasing need for sustainable protein sources while reducing food waste. In this study, creating value from hemp byproducts was pursued with three different approaches: (i) chemical extraction followed by enzymatic digestion, (ii) liquid fermentation by strains of Lactobacillus spp., and (iii) solid-state fermentation by Pleurotus ostreatus. The resulting products exhibited a range of in vitro antioxidant and antihypertensive activity, depending on the proteases used for enzymatic digestion, the bacterial strain, and the length of time of the two fermentation processes. These byproducts could be exploited as functional ingredients in the food, pharmaceutical, and cosmetic industries; the suggested biorefinery processes thus represent potential solutions for the development of other protein-containing byproducts or wastes.


2008 ◽  
Vol 136 ◽  
pp. S391
Author(s):  
Tsung Min Kuo ◽  
Sunil K. Khare ◽  
Jenq-Kuen Huang

Molecules ◽  
2020 ◽  
Vol 25 (13) ◽  
pp. 3024 ◽  
Author(s):  
Filip Boratyński ◽  
Ewa Szczepańska ◽  
Davide De Simeis ◽  
Stefano Serra ◽  
Elisabetta Brenna

Microbial conversion of oleic acid (1) to form value-added industrial products has gained increasing scientific and economic interest. So far, the production of natural lactones with flavor and fragrance properties from fatty acids by non-genetically modified organisms (non-GMO) involves whole cells of bacteria catalyzing the hydration of unsaturated fatty acids as well as yeast strains responsible for further β-oxidation processes. Development of a non-GMO process, involving a sole strain possessing both enzymatic activities, significantly lowers the costs of the process and constitutes a better method from the customers’ point of view regarding biosafety issues. Twenty bacteria from the genus of Bacillus, Comamonas, Dietzia, Gordonia, Micrococcus, Pseudomonas, Rhodococcus and Streptomyces were screened for oxidative functionalization of oleic acid (1). Micrococcus luteus PCM525 was selected as the sole strain catalyzing the one-pot transformation of oleic acid (1) into natural valuable peach and strawberry-flavored γ-dodecalactone (6) used in the food, beverage, cosmetics and pharmaceutical industries. Based on the identified products formed during the process of biotransformation, we clearly established a pathway showing that oleic acid (1) is hydrated to 10-hydroxystearic acid (2), then oxidized to 10-ketostearic acid (3), giving 4-ketolauric acid (4) after three cycles of β-oxidation, which is subsequently reduced and cyclized to γ-dodecalactone (6) (Scheme 1). Moreover, three other strains (Rhodococcus erythropolis DSM44534, Rhodococcus ruber PCM2166, Dietzia sp. DSM44016), with high concomitant activities of oleate hydratase and alcohol dehydrogenase, were identified as efficient producers of 10-ketostearic acid (3), which can be used in lubricant and detergent formulations. Considering the prevalence of γ-dodecalactone (6) and 10-ketostearic acid (3) applications and the economic benefits of sustainable management, microbial bioconversion of oleic acid (1) is an undeniably attractive approach.


2016 ◽  
Vol 46 (4) ◽  
pp. 747-754 ◽  
Author(s):  
Patrícia Fonseca Duarte ◽  
Marcia Alves Chaves ◽  
Caroline Dellinghausen Borges ◽  
Carla Rosane Barboza Mendonça

ABSTRACT: This study aimed to present a literature review about the characteristics, applications, and potential of avocado (Persea americana). Avocado is considered one of the main tropical fruits, as it contains fat-soluble vitamins which are less common in other fruits, besides high levels of protein, potassium and unsaturated fatty acids. Avocado pulp contains variable oil content, and is widely used in the pharmaceutical and cosmetics industry, and in the production of commercial oils similar to olive oil. This fruit has been recognized for its health benefits, especially due to the compounds present in the lipidic fraction, such as omega fatty acids, phytosterols, tocopherols and squalene. Studies have shown the benefits of avocado associated to a balanced diet, especially in reducing cholesterol and preventing cardiovascular diseases. The processed avocado pulp is an alternative to utilize fruits, which can be used in various value-added food products. Fluid extract of the avocado leaves is widely used in pharmaceutical products, mainly due to the diuretic characteristic of the present compounds in plant leaves. With the increasing research supporting the nutritional characteristics and benefits of avocado, the tendency is to increase the production and exploitation of this raw material in Brazil, as also observed in other countries.


Sign in / Sign up

Export Citation Format

Share Document