Biodegradable Packaging Made from Cottonseed Flour: Formation and Improvement by Chemical Treatments with Gossypol, Formaldehyde, and Glutaraldehyde

1995 ◽  
Vol 43 (10) ◽  
pp. 2762-2767 ◽  
Author(s):  
Catherine Marquie ◽  
Christian Aymard ◽  
Jean Louis Cuq ◽  
Stephane Guilbert
2002 ◽  
Vol 716 ◽  
Author(s):  
D. Jacques ◽  
S. Petitdidier ◽  
J.L. Regolini ◽  
K. Barla

AbstractOxide/Nitride dielectric stack is widely used as the standard dielectric for DRAM capacitors. The influence of the chemical cleaning prior to the stack formation has been studied in this work. As a result, morphological data such as stack surface roughness (Atomic Force Microscopy) and silicon nitride (SiN) incubation time for growth are comparable for all the studied cases on <Si>. However, Tof-SIMS exhibits different oxygen content at the Si/stack interface following the different chemical treatments. Electrical measurements show comparable C-V and I-V results, for the same Equivalent Oxide Thickness (same capacitance at strong accumulation i.e.-3V) while the different studied interfaces bring different interface states density with lower values for higher interfacial oxygen content. For DRAM applications, a clear improvement in electrical characteristics is obtained under low interfacial oxygen content conditions. Results are compared in embedded-DRAM cells for which we developed an industrially compatible dielectric deposition sequence to obtain minimum leakage current with maximum specific capacitance and no particular linking constraints.


2017 ◽  
Vol 62 (2) ◽  
pp. 19-28
Author(s):  
Onuc Cozar ◽  
◽  
Nicolae Cioica ◽  
Elena Mihaela Nagy ◽  
Constantin Coţa ◽  
...  

Carbon ◽  
2013 ◽  
Vol 60 ◽  
pp. 280-288 ◽  
Author(s):  
Cristina Flox ◽  
Javier Rubio-García ◽  
Marcel Skoumal ◽  
Teresa Andreu ◽  
Juan Ramón Morante

Polymers ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 2571
Author(s):  
Sweety Shahinur ◽  
Mahbub Hasan ◽  
Qumrul Ahsan ◽  
Nayer Sultana ◽  
Zakaria Ahmed ◽  
...  

Natural renewable materials can play a big role in reducing the consumption of synthetic materials for environmental sustainability. Natural fiber-reinforced composites have attracted significant research and commercial importance due to their versatile characteristics and multi-dimensional applications. As the natural materials are easily rotten, flammable, and moisture absorbent, they require additional chemical modification for use in sustainable product development. In the present research, jute fibers were treated with rot-, fire-, and water-retardant chemicals and their corresponding polymer composites were fabricated using a compression molding technique. To identify the effects of the chemical treatments on the jute fiber and their polymeric composites, a Fourier transformed infrared radiation (FTIR) study was conducted and the results were analyzed. The presence of various chemicals in the post-treated fibers and the associated composites were identified through the FTIR analysis. The varying weight percentage of the chemicals used for treating the fibers affected the physio-mechanical properties of the fiber as well as their composites. From the FTIR analysis, it was concluded that crystallinity increased with the chemical concentration of the treatment which could be contributed to the improvement in their mechanical performance. This study provides valuable information for both academia and industry on the effect of various chemical treatments of the jute fiber for improved product development.


2021 ◽  
Vol 22 (15) ◽  
pp. 7877
Author(s):  
Fahimeh Shahinnia ◽  
Néstor Carrillo ◽  
Mohammad-Reza Hajirezaei

Environmental adversities, particularly drought and nutrient limitation, are among the major causes of crop losses worldwide. Due to the rapid increase of the world’s population, there is an urgent need to combine knowledge of plant science with innovative applications in agriculture to protect plant growth and thus enhance crop yield. In recent decades, engineering strategies have been successfully developed with the aim to improve growth and stress tolerance in plants. Most strategies applied so far have relied on transgenic approaches and/or chemical treatments. However, to cope with rapid climate change and the need to secure sustainable agriculture and biomass production, innovative approaches need to be developed to effectively meet these challenges and demands. In this review, we summarize recent and advanced strategies that involve the use of plant-related cyanobacterial proteins, macro- and micronutrient management, nutrient-coated nanoparticles, and phytopathogenic organisms, all of which offer promise as protective resources to shield plants from climate challenges and to boost stress tolerance in crops.


Polymers ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 767
Author(s):  
Elsa Díaz-Montes ◽  
Roberto Castro-Muñoz

Some of the current challenges faced by the food industry deal with the natural ripening process and the short shelf-life of fresh and minimally processed products. The loss of vitamins and minerals, lipid oxidation, enzymatic browning, and growth of microorganisms have been the main issues for many years within the innovation and improvement of food packaging, which seeks to preserve and protect the product until its consumption. Most of the conventional packaging are petroleum-derived plastics, which after product consumption becomes a major concern due to environmental damage provoked by their difficult degradation. In this sense, many researchers have shown interest in edible films and coatings, which represent an environmentally friendly alternative for food packaging. To date, chitosan (CS) is among the most common materials in the formulation of these biodegradable packaging together with polysaccharides, proteins, and lipids. The good film-forming and biological properties (i.e., antimicrobial, antifungal, and antiviral) of CS have fostered its usage in food packaging. Therefore, the goal of this paper is to collect and discuss the latest development works (over the last five years) aimed at using CS in the manufacture of edible films and coatings for food preservation. Particular attention has been devoted to relevant findings in the field, together with the novel preparation protocols of such biodegradable packaging. Finally, recent trends in new concepts of composite films and coatings are also addressed.


Coatings ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 658
Author(s):  
Anna Sandak ◽  
Edit Földvári-Nagy ◽  
Faksawat Poohphajai ◽  
Rene Herrera Diaz ◽  
Oihana Gordobil ◽  
...  

Wood, as a biological material, is sensitive to environmental conditions and microorganisms; therefore, wood products require protective measures to extend their service life in outdoor applications. Several modification processes are available for the improvement of wood properties, including commercially available solutions. Among the chemical treatments, acetylation by acetic anhydride is one of the most effective methods to induce chemical changes in the constitutive polymers at the cellular wall level. Acetylation reduces wood shrinkage-swelling, increases its durability against biotic agents, improves UV resistance and reduces surface erosion. However, even if the expected service life for external cladding of acetylated wood is estimated to be 60 years, the aesthetics change rapidly during the first years of exposure. Hybrid, or fusion, modification includes processes where the positive effect of a single treatment can be multiplied by merging with additional follow-up modifications. This report presents results of the performance tests of wood samples that, besides the modification by means of acetylation, were additionally protected with seven commercially available coatings. Natural weathering was conducted in Northern Italy for 15 months. Samples were characterized with numerous instruments by measuring samples collected from the stand every three months. Superior performance was observed on samples that merged both treatments. It is due to the combined effect of the wood acetylation and surface coating. Limited shrinkage/swelling of the bulk substrate due to chemical treatment substantially reduced stresses of the coating film. Hybrid process, compared to sole acetylation of wood, assured superior visual performance of the wood surface by preserving its original appearance.


Sign in / Sign up

Export Citation Format

Share Document