Vitamins in Meat, Influence of Chilling Rate and Frozen Storage on B-Complex Vitamin Content of Pork

1955 ◽  
Vol 3 (7) ◽  
pp. 603-605 ◽  
Author(s):  
B. D. Westerman ◽  
Bess Oliver ◽  
D. L. Mackintosh
2018 ◽  
Vol 88 (3-4) ◽  
pp. 151-157 ◽  
Author(s):  
Scott W. Leonard ◽  
Gerd Bobe ◽  
Maret G. Traber

Abstract. To determine optimal conditions for blood collection during clinical trials, where sample handling logistics might preclude prompt separation of erythrocytes from plasma, healthy subjects (n=8, 6 M/2F) were recruited and non-fasting blood samples were collected into tubes containing different anticoagulants (ethylenediaminetetra-acetic acid (EDTA), Li-heparin or Na-heparin). We hypothesized that heparin, but not EDTA, would effectively protect plasma tocopherols, ascorbic acid, and vitamin E catabolites (α- and γ-CEHC) from oxidative damage. To test this hypothesis, one set of tubes was processed immediately and plasma samples were stored at −80°C, while the other set was stored at 4°C and processed the following morning (~30 hours) and analyzed, or the samples were analyzed after 6 months of storage. Plasma ascorbic acid, as measured using HPLC with electrochemical detection (LC-ECD) decreased by 75% with overnight storage using EDTA as an anticoagulant, but was unchanged when heparin was used. Neither time prior to processing, nor anticoagulant, had any significant effects upon plasma α- or γ-tocopherols or α- or γ-CEHC concentrations. α- and γ-tocopherol concentrations remained unchanged after 6 months of storage at −80°C, when measured using either LC-ECD or LC/mass spectrometry. Thus, refrigeration of whole blood at 4°C overnight does not change plasma α- or γ-tocopherol concentrations or their catabolites. Ascorbic acid is unstable in whole blood when EDTA is used as an anticoagulant, but when whole blood is collected with heparin, it can be stored overnight and subsequently processed.


1982 ◽  
Vol 54 (5) ◽  
pp. 964-969 ◽  
Author(s):  
R. N. Terrell ◽  
J. A. Jacobs ◽  
J. W. Savell ◽  
G. C. Smith

Foods ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1695
Author(s):  
Xinyue Zhou ◽  
Wenjun Wang ◽  
Xiaobin Ma ◽  
Enbo Xu ◽  
Donghong Liu

In order to remove the flocculent precipitation in Huyou juice after frozen storage and thawing process, the thawed juice was ultrasonically treated with different power (45–360 W) and time (10–60 min) in ice bath (~0 °C), and its sedimentation behavior during storage was observed. After optimization, the cloud stability of juice could be improved by ultrasonic treatment with ultrasonic power of 360 W or more for at least 30 min, which could be stable during 7 days of storage at 4 °C. Under this optimal condition (360 W, 30 min), the effects of ultrasound on the physicochemical properties and bioactive compounds of thawed Huyou juice during storage were investigated. The results showed that with smaller particle size and lower polymer dispersity index, ultrasonic treatment did not significantly change the color, soluble solids, titratable acidity, and bioactive compounds including flavonoids and other phenolics. In addition, all properties of samples were at the same level during storage. Thus, ultrasound was applicable since it can improve the cloud stability of Huyou juice with minimal impact on its physicochemical properties and nutritional quality compared to the untreated one.


Foods ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1405
Author(s):  
Nima Hematyar ◽  
Jan Mraz ◽  
Vlastimil Stejskal ◽  
Sabine Sampels ◽  
Zuzana Linhartová ◽  
...  

The current knowledge on how different Eurasian perch rearing systems impact the final fillet quality is scant. Therefore, two domestic storage conditions were investigated—10 months frozen (-20 °C) and 12 days refrigerated (+4 °C) storage conditions—in order to determine (i) how the choice of rearing system affects fillets quality during different processing conditions and (ii) if oxidative changes and other quality parameters were interactive. For the proposed idea, proteome analysis, oxidative changes, and some quality parameters were considered in this study. Sodium dodecyl-sulfate polyacrylamide gel electrophoresis (SDS-PAGE) indicated a higher loss of protein in the frozen fillets from ponds (PF) than the fillets from recirculating aquaculture systems (RAS) (RF). Western blot showed a higher protein carbonyls level in RF compared to PF, which was confirmed by the total protein carbonyls during frozen storage. PF indicated less liquid loss, hardness, and oxidation progress than RF in both storage conditions. The biogenic amines index (BAI) in the fillets from either origin showed acceptable levels during storage at +4 °C. Furthermore, the n-3/n-6 ratio was similar for both fillets. The deterioration of fillets during frozen storage was mainly caused by formation of ice crystals followed by protein oxidation, while protein oxidation was the main concern during refrigerated storage confirmed by principal component analysis (PCA) analysis.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Huilin Cheng ◽  
Sumin Song ◽  
Gap-Don Kim

AbstractTo evaluate the relationship between muscle fiber characteristics and the quality of frozen/thawed pork meat, four different muscles, M. longissimus thoracis et lumborum (LTL), M. psoas major (PM), M. semimembranosus (SM), and M. semitendinosus (ST), were analyzed from twenty carcasses. Meat color values (lightness, redness, yellowness, chroma, and hue) changed due to freezing/thawing in LTL, which showed larger IIAX, IIX, and IIXB fibers than found in SM (P < 0.05). SM and ST showed a significant decrease in purge loss and an increase in shear force caused by freezing/thawing (P < 0.05). Compared with LTL, SM contains more type IIXB muscle fibers and ST had larger muscle fibers I and IIA (P < 0.05). PM was the most stable of all muscles, since only its yellowness and chroma were affected by freezing/thawing (P < 0.05). These results suggest that pork muscle fiber characteristics of individual cuts must be considered to avoid quality deterioration during frozen storage.


2021 ◽  
pp. 108201322110037
Author(s):  
Ercan Sarica ◽  
Hayri Coşkun

This study was aimed to determine the changes in kefir samples (CK and GK) made from cow’s and goat’s milk during frozen storage. The CK and GK samples were first stored at +4 °C for 14 and 21 days. Thereafter, all the samples were frozen at –35 °C for 24 h and kept at –18 °C for 45 days. There was no significant change in the fat, protein, acidity and pH values in both samples during the storage. The values of viscosity, WI and C* were higher in the CK samples while the syneresis value was higher in the GK samples throughout the frozen storage. The microorganisms ( Lactococcus spp., Lactobacillus spp., Leuconostoc spp., total mesophilic aerobic bacteria and yeasts) found in kefir made from goat's milk were more affected from the frozen storage. In both samples, the changes in organic acids and volatile flavor components were not significant during frozen storage, except acetic, citric and oxalic acids and acetaldehyde in GK sample. In addition, CK samples were preferred sensorially more by the panellists during frozen storage.


Sign in / Sign up

Export Citation Format

Share Document