Examining Observed Rainfall, Soil Moisture, and River Network Variabilities on Peak Flow Scaling of Rainfall‐Runoff Events with Implications on Regionalization of Peak Flow Quantiles

2019 ◽  
Vol 55 (12) ◽  
pp. 10707-10726
Author(s):  
Gabriel Perez ◽  
Ricardo Mantilla ◽  
Witold F. Krajewski ◽  
Felipe Quintero
2016 ◽  
Vol 25 (3) ◽  
pp. 268 ◽  
Author(s):  
Gabriel Sidman ◽  
D. Phillip Guertin ◽  
David C. Goodrich ◽  
Carl L. Unkrich ◽  
I. Shea Burns

Representation of precipitation is one of the most difficult aspects of modelling post-fire runoff and erosion and also one of the most sensitive input parameters to rainfall-runoff models. The impact of post-fire convective rainstorms, especially in semiarid watersheds, depends on the overlap between locations of high-intensity rainfall and areas of high-severity burns. One of the most useful applications of models in post-fire situations is risk assessment to quantify peak flow and identify areas at high risk of flooding and erosion. This study used the KINEROS2/AGWA model to compare several spatial and temporal rainfall representations of post-fire rainfall-runoff events to determine the effect of differing representations on modelled peak flow and determine at-risk locations within a watershed. Post-fire rainfall-runoff events at Zion National Park in Utah and Bandelier National Monument in New Mexico were modelled. Representations considered included both uniform and Soil Conservation Service Type II hyetographs, applying rain over the entire watershed and applying rain only on the burned area, and varying rainfall both temporally and spatially according to radar data. Results showed that rainfall representation greatly affected modelled peak flow, but did not significantly alter the model’s predictions for high-risk locations. This has important implications for post-fire assessments before a flood-inducing rainfall event, or for post-storm assessments in areas with low-gauge density or lack of radar data due to mountain beam blockage.


2020 ◽  
Author(s):  
Ralf Merz ◽  
Larisa Tarasova ◽  
Stefano Basso

<p>Floods can be caused by a large variety of different processes, such as short, but intense rainfall bursts, long rainfall events, which are wetting up substantial parts of the catchment, or rain on snow cover or frozen soils. Although there is a plethora on studies analysing or modelling rainfall-runoff processes, it is still not well understood, what rainfall and runoff generation conditions are needed to generate flood runoff and how these characteristics vary between catchments. In this databased approach we decipher the ingredients of flood events occurred in 161 catchments across Germany. For each catchment rainfall-runoff events are separated from observed time series for the period 1950-2013, resulting in about 170,000 single events. A peak-over-threshold approach is used to select flood events out of these runoff events. For each event, spatially and temporally distributed rainfall and runoff generation characteristics, such as snow cover and soil moisture, as well as their interaction are derived. Then we decipher those event characteristics controlling flood event occurrence by using machine learning techniques.</p><p>On average, the most important event characteristic controlling flood occurrence in Germany is, as expected, event rainfall volume, followed by the overlap of rainfall and soil moisture and the extent of wet areas in the catchment (area with high soil moisture content). Rainfall intensity is another important characteristic. However, a large variability in its importance is noticeable between dryer catchments where short rainfall floods occur regularly and wetter catchments, where rainfall intensity might be less important for flood generation. To analyse the regional variability of flood ingredients, we cluster the catchments according to similarity in their flood controlling event characteristics and test how good the flood occurrence can be predicted from regionalised event characteristics. Finally, we analyse the regional variability of the flood ingredients in the light of climate and landscape catchment characteristics.</p>


2020 ◽  
Vol 81 (4) ◽  
pp. 679-693
Author(s):  
Deyvid W. B. Rosa ◽  
Nilo O. Nascimento ◽  
Priscilla M. Moura ◽  
Gustavo D. Macedo

Abstract Intense urbanization results in greater soil sealing and a consequent increase in surface runoff. When high soil sealing rates and high slopes are encountered in small catchments, high volume and short duration precipitation events increase the probability of flash floods. This study evaluates the hydrological response of an urban catchment with regard to rainfall-runoff events in the following scenarios: current land use, without a detention basin which has been part of the system since the 1970s, with the maximum soil sealing allowed by legislation, and with green infrastructure implantation in 100%, 50% and 10% of the suitable area. Hydrological modelling was performed using the Storm Water Management Model (SWMM). Six level gauges installed along the length of the stream provided the data used in model calibration and validation. The model calibration process provided adequate results: the average Nash-Sutcliffe coefficient was 0.72, the mean error of peak flow was 11% and the mean error of the runoff volume was 12%. Rainfall based on 2-, 10-, 50- and 100-year events were simulated for each scenario, as well as two observed events. In the scenario without the detention basin, an average elevation of 10% in the peak flow was observed in the catchment outlet. In the scenario with maximum soil sealing, the catchment outlet peak flow increased by 30% on average. On the other hand, in the scenario with green infrastructure implementation in 100%, 50% and 10% of the available areas, the outlet peak flow was reduced by 60%, 30% and 5%, respectively. Results indicated the efficiency of the detention basin to reduce flooding, the importance of green area preservation to reduce peak flows, as well as the catchment potential of green infrastructure implementation and the hydrological benefits that they can provide, increasing infiltration and reducing runoff volume and peak flow.


2020 ◽  
Author(s):  
Konstantina Risva ◽  
Dionysios Nikolopoulos ◽  
Andreas Efstratiadis

<p>We present a distributed hydrological model with minimal calibration requirements, which represents the rainfall-runoff transformation and the flow routing processes. The generation of surface runoff is based on a modified NRCS-CN scheme. Key novelty is the use of representative CN values, which are initially assigned to model cells on the basis of slope, land cover and permeability maps, and adjusted to antecedent soil moisture conditions. For the propagation of runoff to the basin outlet two flow types are considered, i.e. overland flow across the terrain and channel flow along the river network. These are synthesized by employing a novel velocity-based approach, where the assignment of velocities along the river network is based on macroscopic hydraulic information. It also uses the concept of varying time of concentration, which is considered function of the average runoff intensity across the catchment. This configuration is suitable for event-based flood simulation and requires the specification of only two lumped inputs, which are either manually estimated or inferred through calibration. The model can also run in continuous mode, by employing a soil moisture accounting scheme that produces both the surface (overland) runoff and the interflow through the unsaturated zone. The two model configurations are demonstrated in the representation of observed flows across Nedontas river basin at South Peloponnese, Greece.</p>


RBRH ◽  
2019 ◽  
Vol 24 ◽  
Author(s):  
Luiz Claudio Galvão do Valle Junior ◽  
Dulce Buchala Bicca Rodrigues ◽  
Paulo Tarso Sanches de Oliveira

ABSTRACT The Curve Number (CN) method is extensively used for predict surface runoff from storm events. However, remain some uncertainties in the method, such as in the use of an initial abstraction (λ) standard value of 0.2 and on the choice of the most suitable CN values. Here, we compute λ and CN values using rainfall and runoff data to a rural basin located in Midwestern Brazil. We used 30 observed rainfall-runoff events with rainfall depth greater than 25 mm to derive associated CN values using five statistical methods. We noted λ values ranging from 0.005 to 0.455, with a median of 0.045, suggesting the use of λ = 0.05 instead of 0.2. We found a S0.2 to S0.05 conversion factor of 2.865. We also found negative values of Nash-Sutcliffe Efficiency (to the estimated and observed runoff). Therefore, our findings indicated that the CN method was not suitable to estimate runoff in the studied basin. This poor performance suggests that the runoff mechanisms in the studied area are dominated by subsurface stormflow.


Water ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 1707
Author(s):  
Chulsang Yoo ◽  
Huy Phuong Doan ◽  
Changhyun Jun ◽  
Wooyoung Na

In this study, the time–area curve of an ellipse is analytically derived by considering flow velocities within both channel and hillslope. The Clark IUH is also derived analytically by solving the continuity equation with the input of the derived time–area curve to the linear reservoir. The derived Clark IUH is then evaluated by application to the Seolmacheon basin, a small mountainous basin in Korea. The findings in this study are summarized as follows. (1) The time–area curve of a basin can more realistically be derived by considering both the channel and hillslope velocities. The role of the hillslope velocity can also be easily confirmed by analyzing the derived time–area curve. (2) The analytically derived Clark IUH shows the relative roles of the hillslope velocity and the storage coefficient. Under the condition that the channel velocity remains unchanged, the hillslope velocity controls the runoff peak flow and the concentration time. On the other hand, the effect of the storage coefficient can be found in the runoff peak flow and peak time, as well as in the falling limb of the runoff hydrograph. These findings are also confirmed in the analysis of rainfall–runoff events of the Seolmacheon basin. (3) The effect of the hillslope velocity varies considerably depending on the rainfall events, which is also found to be mostly dependent upon the maximum rainfall intensity.


Water ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 872
Author(s):  
Vesna Đukić ◽  
Ranka Erić

Due to the improvement of computation power, in recent decades considerable progress has been made in the development of complex hydrological models. On the other hand, simple conceptual models have also been advanced. Previous studies on rainfall–runoff models have shown that model performance depends very much on the model structure. The purpose of this study is to determine whether the use of a complex hydrological model leads to more accurate results or not and to analyze whether some model structures are more efficient than others. Different configurations of the two models of different complexity, the Système Hydrologique Européen TRANsport (SHETRAN) and Hydrologic Modeling System (HEC-HMS), were compared and evaluated in simulating flash flood runoff for the small (75.9 km2) Jičinka River catchment in the Czech Republic. The two models were compared with respect to runoff simulations at the catchment outlet and soil moisture simulations within the catchment. The results indicate that the more complex SHETRAN model outperforms the simpler HEC HMS model in case of runoff, but not for soil moisture. It can be concluded that the models with higher complexity do not necessarily provide better model performance, and that the reliability of hydrological model simulations can vary depending on the hydrological variable under consideration.


2016 ◽  
Vol 14 (3) ◽  
pp. 443-459 ◽  
Author(s):  
Keewook Kim ◽  
Gene Whelan ◽  
Marirosa Molina ◽  
S. Thomas Purucker ◽  
Yakov Pachepsky ◽  
...  

A series of simulated rainfall-runoff experiments with applications of different manure types (cattle solid pats, poultry dry litter, swine slurry) was conducted across four seasons on a field containing 36 plots (0.75 × 2 m each), resulting in 144 rainfall-runoff events. Simulating time-varying release of Escherichia coli, enterococci, and fecal coliforms from manures applied at typical agronomic rates evaluated the efficacy of the Bradford–Schijven model modified by adding terms for release efficiency and transportation loss. Two complementary, parallel approaches were used to calibrate the model and estimate microbial release parameters. The first was a four-step sequential procedure using the inverse model PEST, which provides appropriate initial parameter values. The second utilized a PEST/bootstrap procedure to estimate average parameters across plots, manure age, and microbe, and to provide parameter distributions. The experiment determined that manure age, microbe, and season had no clear relationship to the release curve. Cattle solid pats released microbes at a different, slower rate than did poultry dry litter or swine slurry, which had very similar release patterns. These findings were consistent with other published results for both bench- and field-scale, suggesting the modified Bradford–Schijven model can be applied to microbial release from manure.


2021 ◽  
Author(s):  
Tailin Li ◽  
Nina Noreika ◽  
Jakub Jeřábek ◽  
Tomáš Dostál ◽  
David Zumr

<p>A better understanding of hydrological processes in agricultural catchments is not only crucial to hydrologists but also helpful for local farmers. Therefore, we have built the freely-available web-based WALNUD dataset (Water in Agricultural Landscape – NUčice Database) for our experimental catchment Nučice (0.53 km<sup>2</sup>), the Czech Republic. We have included observed precipitation, air temperature, stream discharge, and soil moisture in the dataset. Furthermore, we have applied numerical modelling techniques to investigate the hydrological processes (e.g. soil moisture variability, water balance) at the experimental catchment using the dataset.</p><p>The Nučice catchment, established in 2011, serves for the observation of rainfall-runoff processes, soil erosion and water balance of the cultivated landscape. The average altitude is 401 m a.s.l., the mean land slope is 3.9 %, and the climate is humid continental (mean annual temperature 7.9 °C, average annual precipitation 630 mm). The catchment consists of three fields covering over 95 % of the area. There is a narrow stream which begins as a subsurface drainage pipe in the uppermost field draining the water at catchment. The typical crops are winter wheat, rapeseed, mustard and alfalfa. The installed equipment includes a standard meteorological station, several rain gauges distributed in the area of the basin, and an H flume to monitor the stream discharge, water turbidity and basic water quality indicators. The soil water content (at point scale) and groundwater level are also recorded. Recently, we have installed two cosmic-ray soil moisture sensors (StyX Neutronica) to estimate large-scale topsoil water content at the catchment.</p><p>Even though the soil management and soil properties in the fields of Nučice seem to be nearly homogeneous, we have observed variability in the topsoil moisture pattern. The method for the explanation of the soil water regime was the combination of the connectivity indices and numerical modelling. The soil moisture profiles from the point-scale sensors were processed in a 1-D physically-based soil water model (HYDRUS-1D) to optimize the soil hydraulic parameters. Further, the soil hydraulic parameters were used as input into a 3D spatially-distributed model, MIKE-SHE. The MIKE-SHE simulation has been mainly calibrated with rainfall-runoff observations. Meanwhile, the spatial patterns of the soil moisture were assessed from the simulation for both dry and wet catchment conditions. From the MIKE-SHE simulation, the optimized soil hydraulic parameters have improved the estimation of soil moisture dynamics and runoff generation. Also, the correlation between the observed and simulated soil moisture spatial patterns showed different behaviors during the dry and wet catchment conditions.</p><p>This study has been supported by the Grant Agency of the Czech Technical University in Prague, grant No. SGS20/156/OHK1/3T/11 and the Project SHui which is co-funded by the European Union Project: 773903 and the Chinese MOST.</p>


2015 ◽  
Vol 63 (3) ◽  
pp. 235-245 ◽  
Author(s):  
Laurent Pfister ◽  
Carlos E. Wetzel ◽  
Núria Martínez-Carreras ◽  
Jean François Iffly ◽  
Julian Klaus ◽  
...  

Abstract Hydrological processes research remains a field that is severely measurement limited. While conventional tracers (geochemicals, isotopes) have brought extremely valuable insights into water source and flowpaths, they nonetheless have limitations that clearly constrain their range of application. Integrating hydrology and ecology in catchment science has been repeatedly advocated as offering potential for interdisciplinary studies that are eventually to provide a holistic view of catchment functioning. In this context, aerial diatoms have been shown to have the potential for detecting of the onset/cessation of rapid water flowpaths within the hillslope-riparian zone-stream continuum. However, many open questions prevail as to aerial diatom reservoir size, depletion and recovery, as well as to their mobilisation and transport processes. Moreover, aerial diatoms remain poorly known compared to freshwater species and new species are still being discovered. Here, we ask whether aerial diatom flushing can be observed in three catchments with contrasting physiographic characteristics in Luxembourg, Oregon (USA) and Slovakia. This is a prerequisite for qualifying aerial diatoms as a robust indicator of the onset/cessation of rapid water flowpaths across a wider range of physiographical contexts. One species in particular, (Hantzschia amphioxys (Ehr.) Grunow), was found to be common to the three investigated catchments. Aerial diatom species were flushed, in different relative proportions, to the river network during rainfall-runoff events in all three catchments. Our take-away message from this preliminary examination is that aerial diatoms appear to have a potential for tracing episodic hydrological connectivity through a wider range of physiographic contexts and therefore serve as a complementary tool to conventional hydrological tracers.


Sign in / Sign up

Export Citation Format

Share Document