scholarly journals Aldo-keto reductases are biomarkers of NRF2 activity and are co-ordinately overexpressed in non-small cell lung cancer

2016 ◽  
Vol 115 (12) ◽  
pp. 1530-1539 ◽  
Author(s):  
A Kenneth MacLeod ◽  
Lourdes Acosta-Jimenez ◽  
Philip J Coates ◽  
Michael McMahon ◽  
Frank A Carey ◽  
...  

Abstract Background: Although the nuclear factor-erythroid 2-related factor 2 (NRF2) pathway is one of the most frequently dysregulated in cancer, it is not clear whether mutational status is a good predictor of NRF2 activity. Here we utilise four members of the aldo-keto reductase (AKR) superfamily as biomarkers to address this question. Methods: Twenty-three cell lines of diverse origin and NRF2-pathway mutational status were used to determine the relationship between AKR expression and NRF2 activity. AKR expression was evaluated in lung cancer biopsies and Cancer Genome Atlas (TCGA) and Oncomine data sets. Results: AKRs were expressed at a high basal level in cell lines carrying mutations in the NRF2 pathway. In non-mutant cell lines, co-ordinate induction of AKRs was consistently observed following activation of NRF2. Immunohistochemical analysis of lung tumour biopsies and interrogation of TCGA data revealed that AKRs are enriched in both squamous cell carcinomas (SCCs) and adenocarcinomas that contain somatic alterations in the NRF2 pathway but, in the case of SCC, AKRs were also enriched in most other tumours. Conclusions: An AKR biomarker panel can be used to determine NRF2 status in tumours. Hyperactivation of the NRF2 pathway is far more prevalent in lung SCC than previously predicted by genomic analyses.

2013 ◽  
Vol 30 (2) ◽  
pp. 623-636 ◽  
Author(s):  
ELENI ANDRIANA TRIGKA ◽  
GEORGIA LEVIDOU ◽  
ANGELICA A. SAETTA ◽  
ILENIA CHATZIANDREOU ◽  
PERIKLIS TOMOS ◽  
...  

1999 ◽  
Vol 344 (3) ◽  
pp. 961-970 ◽  
Author(s):  
Judy M. COULSON ◽  
Carolyn E. FISKERSTRAND ◽  
Penella J. WOLL ◽  
John P. QUINN

[Arginine]vasopressin (AVP) is a neuropeptide physiologically synthesized in the hypothalamus but pathologically expressed by small-cell lung cancer (SCLC). A minimal 65 bp AVP promoter can restrict basal activity to SCLC in vitro, but a 199 bp fragment directs 5-fold higher expression in SCLC [Coulson, Stanley and Woll (1999) Br. J. Cancer 80, 1935-1944]. Several predicted E-box motifs occur within the 199 bp fragment, and we now describe an enhancer which contributes to AVP promoter tumour-specificity in some cell lines. The deletion of two adjacent E-boxes (-157 to -131) resulted in an approx. 70% loss of reporter gene expression in a SCLC line (Lu-165) with high endogenous AVP production. Using a series of AVP promoter deletion constructs and site-directed mutagenesis, we show that both these E-box sites were required for enhancer function, whereas mutation of an adjacent AP-1 site had no effect on the promoter activity. Electrophoretic-mobility-shift analysis indicated that, although both the predicted E-box motifs bound specific complexes, only one appeared to function as a strong E-box which binds basic helix-loop-helix (bHLH) factors. This motif formed a complex in lung tumour-cell extracts, which was particularly strongly bound in Lu-165, and was competed for by a characterized E-box motif from the preprotachykinin A promoter. Antibody supershifts indicate that this complex is a heterodimer of upstream stimulatory factor (USF)-1 and USF-2. Non-bHLH complexes weakly bound the second potential E-box motif in a SCLC-specific manner. These complexes were not recognized by the bHLH antibodies and remain unidentified; however, they were detected in seven of eight SCLC cell lines and not in four control lines. We postulate that there is a co-operative and complex interaction between an E-box and an adjacent site constituting a SCLC-specific enhancer within the AVP proximal promoter.


2020 ◽  
Vol 295 (38) ◽  
pp. 13393-13406
Author(s):  
Long Shuang Huang ◽  
Sainath R. Kotha ◽  
Sreedevi Avasarala ◽  
Michelle VanScoyk ◽  
Robert A. Winn ◽  
...  

Lysocardiolipin acyltransferase (LYCAT), a cardiolipin (CL)-remodeling enzyme, is crucial for maintaining normal mitochondrial function and vascular development. Despite the well-characterized role for LYCAT in the regulation of mitochondrial dynamics, its involvement in lung cancer, if any, remains incompletely understood. In this study, in silico analysis of TCGA lung cancer data sets revealed a significant increase in LYCAT expression, which was later corroborated in human lung cancer tissues and immortalized lung cancer cell lines via indirect immunofluorescence and immunoblotting, respectively. Stable knockdown of LYCAT in NSCLC cell lines not only reduced CL and increased monolyso-CL levels but also reduced in vivo tumor growth, as determined by xenograft studies in athymic nude mice. Furthermore, blocking LYCAT activity using a LYCAT mimetic peptide attenuated cell migration, suggesting a novel role for LYCAT activity in promoting NSCLC. Mechanistically, the pro-proliferative effects of LYCAT were mediated by an increase in mitochondrial fusion and a G1/S cell cycle transition, both of which are linked to increased cell proliferation. Taken together, these results demonstrate a novel role for LYCAT in promoting NSCLC and suggest that targeting LYCAT expression or activity in NSCLC may provide new avenues for the therapeutic treatment of lung cancer.


2017 ◽  
Vol 35 (15_suppl) ◽  
pp. e23056-e23056
Author(s):  
Jessica Garcia ◽  
Julien Forestier ◽  
Eric Dusserre ◽  
Claire Rodriguez-Lafrasse ◽  
Valérie Cheynet ◽  
...  

e23056 Background: A number of RAS mutations confer resistance to anti-EGFR therapies routinely used in the treatment of colon cancer. The objective of this study was to evaluate the pertinence of analyzing circulating-free plasma DNA (cfDNA) as an indicator of the mutational status of a tumor, in order to use liquid biopsies instead of invasive and painful tumor biopsies during tumor progression. Methods: A cohort of 24 lung and 25 colon cancer patients was constituted in the Hospices Civils of Lyon. Liquid biopsy plasma samples were collected at diagnosis (colon cancer) and during tumor progression (lung cancer) for the purpose of the current study. KRAS and NRAS somatic alterations were quantified using three different technologies: the Droplet Digital polymerase chain reaction (ddPCR) from BioRad, the BEAMing Digital PCR from Sysmex Inostics, and the NGS NextSeq 500 by Illumina with the Accel-Amplicon 56G Oncology Panel from SWIFT BIOSCIENCES. Results: We observed a high level of sensitivity and specificity with the BEAMing technology, which provided us with excellent matches, around 96% and 73%, between solid and liquid biopsies taken at diagnosis (colon cancer) or during tumor progression (lung cancer), respectively. Indeed, when examining cfDNA from patients displaying one of the KRAS or NRAS mutations, 11 of the 13 mutations were confirmed using this technology, whereas only 5-6 matched the initial NGS status, using the two other technologies. The detection threshold was estimated at 1% for samples containing at least 0.8 ngctDNA/µL for the multiplex screening ddPCR from BioRad and for the 56G Oncology Panel from SWIFT BIOSCIENCES. The threshold was lower, at 0.03%, in samples containing only 0.25 ng ctDNA/µL for the BEAMing technology, which includes a PCR pre-amplification step. Conclusions: The advantage of the Illumina NGS technology is the larger coverage of longer gene regions, and thus the detection of more genetic mutations. Finally, the BEAMing technology enabled us to follow the appearance and disappearance of somatic alterations, with a very high level of sensitivity.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 4512-4512
Author(s):  
Lisa J Crawford ◽  
David Campbell ◽  
Ken I Mills ◽  
Alexandra E Irvine

Abstract Background Proteasome inhibitors have provided significant therapeutic advance in the treatment of Multiple Myeloma (MM), however resistance and dose limiting side effects remain a clinical challenge. Recent research has focused on developing strategies to target other enzymes within the ubiquitin proteasome system, with the aim of overcoming resistance and toxicity. We have previously reported deregulated expression of the E3 ligase HUWE1 in MM and demonstrated that knockdown or inhibition of HUWE1 leads to a decrease in MYC activity (Blood 2016, 128:240; 2017, 130:3077). HUWE1 is a large HECT domain E3 ligase that is involved in the regulation of key proteins such as p53, MYC and MCL-1. Mutations in HUWE1 have recently been identified in MM patients, significantly associated with the t(11;14) subgroup (blood-2018-03-840132). A recurrently mutated splice site mutation in the DUF913 (domain of unknown function 913) of HUWE1 was identified in 18% of patients, the remainder are predominantly missense mutations distributed across the coding sequence (CDS). Other studies have demonstrated that point mutations in the dimerization interface of HUWE1, which acts to regulate its activity, result in hyper-activation of HUWE1 (eLife 2017;6:e21036; Sci Rep 2017;7:15050). While 7% of the mutations reported in MM patients are found in this region, the effect of the majority of mutations on the functional significance of HUWE1 has yet to be determined. The aim of this study was to analyse HUWE1 expression and activity in HUWE1 mutant MM cell lines. Methods HUWE1 mutational status was analysed in a publically available dataset of MM cell lines (www.keatslab.org). Inhibitors of HUWE1 (BI8622, BI8626; described in EMBO Mol Med 2014, 6:1525-1541) were purchased from Syngene. The effect of the inhibitors on HUWE1 mutant MM cell lines was assessed using CellTitre-glo. HUWE1 auto-ubiquitination activity was analysed using UbiQapture-Q and Western blotting. Results HUWE1 mutations were identified in 6 out of 69 MM cell lines. HUWE1 mutational status was confirmed in 5 cell lines (U266, XG-1, XG-2, KMS-27, H1112) by Sanger sequencing. In agreement with MM patient data, HUWE1 mutations were predominantly found in cell lines expressing the t(11;14) translocation (4/6 cell lines) and are distributed in a similar manner. H1112 cells harbor the recurrent splice site mutation observed in patients, whereas the other cell lines contain missense mutations across the CDS. HUWE1 protein expression in mutant cell lines was compared with expression in 5 MM cell lines expressing wild type (WT) HUWE1 (JJN3, MM.1S, ANBL-6, KMS-18, OPM-2). No significant difference in expression was observed in the majority of HUWE1 mutant cell lines, however, HUWE1 expression was significantly lower in the H1112 cell line (p=0.002) compared to HUWE1 WT cell lines. Accordingly, HUWE1 auto-ubiquitination activity was reduced only in H1112 cells. XG-2 and U266 displayed similar sensitivity to HUWE1 inhibitors as HUWE1 WT cell lines (IC50 12-18 µM vs 9-20 µM), while XG-1, H1112 and KMS-27 were less sensitive (IC50 20-33 µM). The effect of HUWE1 on substrate proteins (e.g. MYC) varies depending on tumor type. In HUWE1 WT MM cell lines, inhibition of HUWE1 leads to significantly decreased expression of MYC and MCL-1 in (p<0.01), through increased proteasomal degradation. A similar decrease in MYC and MCL-1 expression is observed in XG-2, and in MCL-1 in U266 cells (which lack expression of c-MYC). Conversely, no significant effect on MYC or MCL-1 expression was seen in XG-1 cells, while barely detectable levels of MYC and MCL-1 were observed in H1112 and KMS-27 cells, suggesting altered or absent HUWE1 activity in these cell lines. Conclusion HUWE1 has recently been identified as a mutational driver in t(11;14) MM, however, little is known about the functional consequence of HUWE1 mutations. Here we show that the H1112 cell line, representative of the most commonly occurring HUWE1 mutation in MM, leads to reduced expression and activity of HUWE1 and is associated with low expression of HUWE1 substrates MYC and MCL-1. Conversely, expression of HUWE1 and activity against selected substrates remains unchanged in XG-2 and U266 cells. Moreover, recent studies demonstrate that certain HUWE1 mutations lead to enhanced catalytic activity. In summary, the pathogenicity of HUWE1 mutations in MM is likely to depend on the type and location of the mutation. Disclosures No relevant conflicts of interest to declare.


2009 ◽  
Vol 27 (15_suppl) ◽  
pp. e22103-e22103
Author(s):  
H. Otani ◽  
M. Jida ◽  
M. Takaoka ◽  
T. Kubo ◽  
T. Hayashi ◽  
...  

e22103 Background: Mutations in the epidermal growth factor receptor (EGFR) gene is the predictive factor for sensitivity of EGFR tyrosine kinase inhibitors (TKIs) in non-small cell lung cancer. Focal adhesion kinase (FAK) that is the downstream molecule of EGFR has been reported to be highly expressed in NSCLC suggesting novel therapeutic target of NSCLC. TAE226, dual inhibitor for FAK and insulin like growth factor-I receptor (IGF-IR), have been developed as anticancer reagent. In this study, we examined the effect of TAE226 on NSCLC from the view point of EGFR mutation status. Methods: We used NSCLC cell lines consisting of 4 EGFR mutant cell lines (PC9, H3255, HCC827, H1975) and 3 EGFR wild type cell lines (H1819, H1299, A549). We also used PC9 derived resistant cell line (RPC9). Antiproliferative effect of TAE226 on NSCLC cell lines was examined with MTS assay. The status of EGFR related molecules including its downstream signal pathway was investigated by western blotting analysis. The effect of TAE226 on xenograft mouse models was also examined. Results: TAE226 was effective on NSCLC cell lines with EGFR mutation including T790M mutation, compared to those with EGFR wild type. The value of IC50 (μmol/L) for PC-9, H3255, HCC827, H1975, RPC-9 and H1819, H1299, A549 was 0.16, 0.12, 0.086, 0.17, 0.31 and 4.7, 2.8, 1.4, respectively. Western blotting assay showed that TAE226 preferentially inhibited phosphor-EGFR and its downstream signaling mediators. We could confirm the anticancer effect of TAE226 on EGFR mutant cells was confirmed in xenograft mouse models. Conclusions: We indicated that TAE226 showed antitumor effect on EGFR mutant cell lines even T790M mutant cells. Further study is necessary to understand the mechanism of TAE226 effect on EGFR mutant cell lines. Our results suggest that TAE226 will be expected as the novel strategy for NSCLC. No significant financial relationships to disclose.


2020 ◽  
Author(s):  
Meiling Gong ◽  
Yan Li ◽  
Xiao-Ping Ye ◽  
Linlin Zhang ◽  
Zhifang Wang ◽  
...  

Abstract Background and Purpose: Targeted therapy and immunotherapy have led to dramatic change in the treatment of lung cancer, however, the overall 5-year survival rate of lung cancer patients is still suboptimal. It is important to exploit new potential of molecularly targeted therapies. High-frequency somatic mutations in KEAP1/NRF2 (27.9%) have been identified in lung squamous cell carcinoma. In this research, we explored the role of KEAP1 somatic mutations in the development of LSCC and whether a nuclear factor erythroid 2-related factor 2(NRF2) inhibitor be potential to targetlung cancer carrying KEAP1/NRF2 mutations. Methods: Lung cancer cell lines A549 and H460 with loss-of-function mutations in KEAP1 stably transfected with wild-type (WT) KEAP1 or somatic mutations in KEAP1 were used to investigate the functions of somatic mutations in KEAP1 . Flow cytometry, plate clone formation experiments, and scratch tests were used to examine reactive oxygen species, proliferation, and migration of these cell lines. Results: The expression of NRF2 and its target genes increased , and tumor cell proliferation, migration, and tumor growth were accelerated in A549 and H460 cells stably transfected with KEAP1 mutants compared to control cells with a loss-of-function KEAP1 mutation and stably transfected with WT KEAP1 in both in vitro and in vivo studies. The proliferation of A549 cell line trasfected with the R320Q KEAP1 mutant was Inhibited more apparent than that of the A549 cell line trasfected with WT KEAP1 after treatment with NRF2 inhibitor ML385. Conclusion : Somatic mutations of KEAP1 identified from patients with LSCC likely promote tumorigenesis mediated by activation of the KEAP1/NRF2 antioxidant stress response pathway. NRF2 inhibition with ML385 could inhibit the proliferation of tumor cells with KEAP1 mutation.


Cancers ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 3906
Author(s):  
Jaya Padmanabhan ◽  
Biswarup Saha ◽  
Chase Powell ◽  
Qianxing Mo ◽  
Bradford A. Perez ◽  
...  

Non-small cell lung cancer has a 5-year survival rate of less than 12–15%, calling for the development of additional therapeutic strategies to combat this disease. Here we tested the efficacy of inhibiting cyclin-dependent kinase 9 (CDK9) on lung cancer cell lines with K-Ras and EGFR mutations and on lung cancer organoids. Three different CDK9 inhibitors reduced the viability and anchorage-independent growth of lung cancer cell lines at very low nanomolar to micromolar concentrations. CDK9 inhibition suppressed the expression of the anti-apoptotic protein, Mcl1, as well as the embryonic stem cell transcription factors, Sox2 and Sox9, which are pro-tumorigenic. In contrast, treatment with CDK9 inhibitors increased the levels of WT p53 and its downstream target p21 in K-Ras mutant cell lines. Furthermore, the CDK9 inhibitors could markedly reduce the viability of Osimertinib-resistant PC9 and AMG510-resistant H23 and H358 cells with comparable efficacy as the parental cells. CDK9 inhibitors could also significantly reduce the growth and viability of lung cancer organoids with high potency. Taken together, the data presented here strongly suggest that CDK9 inhibitors would be efficacious against K-Ras mutant and EGFR mutant NSCLCs, including those that develop resistance to targeted therapies.


2021 ◽  
Vol 5 (1) ◽  
Author(s):  
Natalia J. Gurule ◽  
Caroline E. McCoach ◽  
Trista K. Hinz ◽  
Daniel T. Merrick ◽  
Adriaan Van Bokhoven ◽  
...  

AbstractTyrosine kinase inhibitors (TKIs) targeting EGFR-mutant lung cancers promote a range of tumor regression responses to yield variable residual disease, a likely incubator for acquired resistance. Herein, rapid transcriptional responses induced by TKIs early in treatment that associate with the range of patient responses were explored. RNAseq was performed on EGFR mutant cell lines treated in vitro with osimertinib and on tumor biopsies of eight EGFR mutant lung cancer patients before and after 2 weeks of TKI treatment. Data were evaluated for gene expression programs altered upon TKI treatment. Chemokine and cytokine expression were measured by ELISA and quantitative RT-PCR. IκB Kinase (IKK) and JAK-STAT pathway dependence was tested with pharmacologic and molecular inhibitors. Tumor sections were stained for the T-cell marker CD3. Osimertinib stimulated dynamic, yet wide-ranging interferon (IFN) program regulation in EGFR mutant cell lines. IL6 and CXCL10 induction varied markedly among the EGFR mutant cell lines and was sensitive to IKK and JAK-STAT inhibitors. Analysis of matched patient biopsy pairs revealed marked, yet varied enrichment of IFN transcriptional programs, effector immune cell signatures and T-cell content in treated tumors that positively correlated with time to progression in the patients. EGFR-specific TKIs induce wide-ranging IFN response program activation originating within the cancer cell. The strong association of IFN program induction and duration of clinical response indicates that the TKI-induced IFN program instructs variable recruitment and participation of immune cells in the overall therapeutic response.


Sign in / Sign up

Export Citation Format

Share Document