Identification of differentially expressed genes and their upstream regulators in colorectal cancer

2017 ◽  
Vol 24 (6) ◽  
pp. 244-250 ◽  
Author(s):  
H Y Liu ◽  
C J Zhang
2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Xiao-Liang Xing ◽  
Zhi-Yong Yao ◽  
Chaoqun Xing ◽  
Zhi Huang ◽  
Jing Peng ◽  
...  

Abstract Background Colorectal cancer (CRC) is the second most prevalent cancer, as it accounts for approximately 10% of all annually diagnosed cancers. Studies have indicated that DNA methylation is involved in cancer genesis. The purpose of this study was to investigate the relationships among DNA methylation, gene expression and the tumor-immune microenvironment of CRC, and finally, to identify potential key genes related to immune cell infiltration in CRC. Methods In the present study, we used the ChAMP and DESeq2 packages, correlation analyses, and Cox regression analyses to identify immune-related differentially expressed genes (IR-DEGs) that were correlated with aberrant methylation and to construct a risk assessment model. Results Finally, we found that HSPA1A expression and CCRL2 expression were positively and negatively associated with the risk score of CRC, respectively. Patients in the high-risk group were more positively correlated with some types of tumor-infiltrating immune cells, whereas they were negatively correlated with other tumor-infiltrating immune cells. After the patients were regrouped according to the median risk score, we could more effectively distinguish them based on survival outcome, clinicopathological characteristics, specific tumor-immune infiltration status and highly expressed immune-related biomarkers. Conclusion This study suggested that the risk assessment model constructed by pairing immune-related differentially expressed genes correlated with aberrant DNA methylation could predict the outcome of CRC patients and might help to identify those patients who could benefit from antitumor immunotherapy.


2021 ◽  
Author(s):  
Feifei Liu ◽  
Yu Wang ◽  
Wenxue Li ◽  
Diancheng Li ◽  
Yuwei Xin ◽  
...  

Abstract Background: Colorectal cancer (CRC) is one of the most common malignancies of the digestive system; the progression and prognosis of which are affected by a complicated network of genes and pathways. The aim of this study was to identify potential hub genes associated with the progression and prognosis of colorectal cancer (CRC).Methods: We obtained gene expression profiles from GEO database to search differentially expressed genes (DEGs) between CRC tissues and normal tissue. Subsequently, we conducted a functional enrichment analysis, generated a protein–protein interaction (PPI) network to identify the hub genes, and analyzed the expression validation of the hub genes. Kaplan–Meier plotter survival analysis tool was performed to evaluate the prognostic value of hub genes expression in CRC patients.Results: A total of 370 samples, involving CRC and normal tissues were enrolled in this article. 283 differentially expressed genes (DEGs), including 62 upregulated genes and 221 downregulated genes between CRC and normal tissues were selected. We finally filtered out 6 hub genes, including INSL5, MTIM, GCG, SPP1, HSD11B2, and MAOB. In the database of TCGA-COAD, the mRNA expression of INSL5, MT1M, HSD11B2, MAOB in tumor is lower than that in normal; the mRNA expression of SPP1 in tumor is higher than that in normal. In the HPA database, the expression of INSL5, GCG, HSD11B2, MAOB in tumor is lower than that in normal tissues; the expression of SPP1 in the tumor is higher than that in normal tissues. Survival analysis revealed that INSL5, GCG, SPP1 and MT1M may serve as prognostic biomarkers in CRC. Conclusions: We screened out six hub genes to predict the occurrence and prognosis of patients with CRC using bioinformatics methods, which may provide new targets and ideas for diagnosis, prognosis and individualized treatment for CRC.


2015 ◽  
Vol 112 (25) ◽  
pp. 7743-7748 ◽  
Author(s):  
Muhammad Akhtar Ali ◽  
Shady Younis ◽  
Ola Wallerman ◽  
Rajesh Gupta ◽  
Leif Andersson ◽  
...  

The transcription factor ZBED6 (zinc finger, BED-type containing 6) is a repressor of IGF2 whose action impacts development, cell proliferation, and growth in placental mammals. In human colorectal cancers, IGF2 overexpression is mutually exclusive with somatic mutations in PI3K signaling components, providing genetic evidence for a role in the PI3K pathway. To understand the role of ZBED6 in tumorigenesis, we engineered and validated somatic cell ZBED6 knock-outs in the human colorectal cancer cell lines RKO and HCT116. Ablation of ZBED6 affected the cell cycle and led to increased growth rate in RKO cells but reduced growth in HCT116 cells. This striking difference was reflected in the transcriptome analyses, which revealed enrichment of cell-cycle–related processes among differentially expressed genes in both cell lines, but the direction of change often differed between the cell lines. ChIP sequencing analyses displayed enrichment of ZBED6 binding at genes up-regulated in ZBED6-knockout clones, consistent with the view that ZBED6 modulates gene expression primarily by repressing transcription. Ten differentially expressed genes were identified as putative direct gene targets, and their down-regulation by ZBED6 was validated experimentally. Eight of these genes were linked to the Wnt, Hippo, TGF-β, EGF receptor, or PI3K pathways, all involved in colorectal cancer development. The results of this study show that the effect of ZBED6 on tumor development depends on the genetic background and the transcriptional state of its target genes.


Author(s):  
Jing Wang ◽  
Yuan-wei Zhang ◽  
Nian-jie Zhang ◽  
Shuo Yin ◽  
Du-ji Ruan ◽  
...  

Recently, the effect of endocrine-disrupting chemicals on the cancer procession has been a concern. Nonylphenol (NP) is a common environmental estrogen that has been shown to enhance the proliferation of colorectal cancer (CRC) cells in our previous studies; however, the underlying mechanism remains unclear. In this study, we confirmed the increased concentration of NP in the serum of patients with CRC. RNA sequencing was used to explore the differentially expressed genes after NP exposure. We found 16 upregulated genes and 12 downregulated genes in COLO205 cells after NP treatment. Among these differentially expressed genes, we found that coiled-coil domain containing 80 (CCDC80) was downregulated by NP treatment and was associated with CRC progression. Further experiments revealed that the overexpression of CCDC80 significantly suppressed NP-induced cell proliferation and recovered the reduced cell apoptosis. Meanwhile, the overexpression of CCDC80 significantly inhibited the activation of ERK1/2 induced by NP treatment. ERK1/2 inhibitor (PD98059) treatment also suppressed NP-induced CRC cell growth, but the overexpression of CCDC80 did not enhance the effect of ERK1/2 inhibitor. Taken together, NP treatment significantly inhibited the expression of CCDC80, and the overexpression of CCDC80 suppressed NP-induced CRC cell growth by inhibiting the activation of ERK1/2. These results suggest that NP could induce CRC cell growth by influencing the expression of multiple genes. CCDC80 and ERK1/2 inhibitors may be suitable therapeutic targets in NP-related CRC progression.


2020 ◽  
Vol 20 ◽  
Author(s):  
Zsuzsanna Molnár ◽  
Zsófia Bánlaki ◽  
Anikó Somogyi ◽  
Zoltán Herold ◽  
Magdolna Herold ◽  
...  

Background: Type 2 diabetes (T2DM) and colorectal cancer (CRC) are both known to modulate gene expression patterns in peripheral blood leukocytes (PBLs). Objective : As T2DM has been shown to increase the incidence of CRC, we were prompted to check whether diabetes affects mRNA signatures in PBLs isolated from CRC patients. Methods : 22 patients were recruited to the study and classified into four cohorts (healthy controls; T2DM; CRC; CRC and T2DM). Relative expression levels of 573 cell signaling gene transcripts were determined by reverse transcription real-time PCR assays run on low-density OpenArray platforms. Enrichment analysis was performed with the g:GOSt profiling tool to order differentially expressed genes into functional pathways. Results : 49 genes were found to be significantly up- or downregulated in tumorous diabetic individuals as compared to tumor-free diabetic controls, while 11 transcripts were differentially regulated in patients with CRC versus healthy, tumor-free and non-diabetic controls. Importantly, these gene sets were completely distinct, implying that diabetes exerts profound influence on the transcription of signaling genes in CRC. The top 5 genes showing most significant expression differences in both contexts were PCK2, MAPK9, CCND1, HMBS, TLR3 (p≤ 0.0040) and CREBBP, PPIA, NFKBIL1, MDM2 and SELPLG (p0.0121), respectively. Functional analysis revealed that most significantly affected pathways were cytokine, interleukin and PI3K/Akt/mTOR signaling cascades as well as mitotic regulation. Conclusions : We propose that differentially expressed genes listed above might be potential biomarkers of CRC and should be studied further on larger patient groups. Diabetes might promote colorectal carcinogenesis by impairing signaling pathways in PBLs.


2021 ◽  
Author(s):  
Yuxuan HUANG ◽  
Ge CUI

Abstract Aims: To utilize the bioinformatics to analyze the differentially expressed genes (DEGs), interaction proteins, perform gene enrichment analysis, protein-protein interaction network (PPI) and map the hub genes between colorectal cancer(CRC) and colorectal adenocarcinomas(CA).Methods: We analyzed a microarray dataset (GSE32323 and GSE4183) from the Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) in tumor tissues and non-cancerous tissues were identified using the dplyr and Venn diagram packages of the R Studio software. Functional annotation of the DEGs was performed using the Gene Ontology (GO) website. Pathway enrichment (KEGG) used the WebGestalt to analyze the data and R Studio to generate the graph. We constructed a protein–protein interaction (PPI) network of DEGs using STRING and Cytoscape software was used for visualization. Survival analysis of the hub genes and was performed using the online platform GEPIA to determine the prognostic value of the expression of hub genes in cell lines from CRC patients. The expression of molecules with prognostic values was validated on the UALCAN database. The expression of hub genes was examined using the Human Protein Atlas. Results: Applying the GEO2R analysis and R studio, we identified a total of 471 upregulated and 278 downregulated DEGs. By using the online database WebGestalt, we identified the most relevant biological networks involving DEGs with statistically significant differences in expression were mainly associated with biological processes involved in the cell proliferation, cell cycle transition, cell homeostasis and indicated the role of each DEGs in cell cycle regulation pathways. We found 10 hub genes with prognostic values were overexpressed in the CRC and CA samples.Conclusion: we found out ten hub genes and three core genes closely associated with the pathogenesis and prognosis of CRC and CA, which is of great significance for colorectal tumor early detection and prognosis evaluation.


2020 ◽  
Vol 48 (8) ◽  
pp. 030006052094903
Author(s):  
Xue Zhang ◽  
Jing Zuo ◽  
Long Wang ◽  
Jing Han ◽  
Li Feng ◽  
...  

Objective As a unique histological subtype of colorectal cancer (CRC), mucinous adenocarcinoma (MC) has a poor prognosis and responds poorly to treatment. Genes and markers related to MC have not been reported. Methods To identify biomarkers involved in development of MC compared with other common adenocarcinoma (AC) subtypes, four datasets were obtained from the Gene Expression Omnibus database. Differentially expressed genes (DEGs) were identified using GEO2R. A protein–protein interaction network was constructed. Functional annotation for DEGs was performed via DAVID, Metascape, and BiNGO. Significant modules and hub genes were identified using Cytoscape, and expression of hub genes and relationships between hub genes and MC were analyzed. Results The DEGs were mainly enriched in negative regulation of cell proliferation, bicarbonate transport, response to peptide hormone, cell–cell signaling, cell proliferation, and positive regulation of the canonical Wnt signaling pathway. The Venn diagram revealed eight significant hub genes: CXCL9, IDO1, MET, SNAI2, and ZEB2 were highly expressed in MC compared with AC, whereas AREG, TWIST1, and ZEB1 were expressed at a low level. AREG and MET might be significant biomarkers for MC. Conclusion The identified DEGs might help elucidate the pathogenesis of MC, identify potential targets, and improve treatment for CRC.


FEBS Letters ◽  
1999 ◽  
Vol 463 (1-2) ◽  
pp. 77-82 ◽  
Author(s):  
Simon E. Hufton ◽  
Peter T. Moerkerk ◽  
Ricardo Brandwijk ◽  
Adriaan P. de Bruïne ◽  
Jan-Willem Arends ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document