scholarly journals Microglia is a Key Player in the Reduction of Stroke Damage Promoted by the New Antithrombotic Agent Ticagrelor

2014 ◽  
Vol 34 (6) ◽  
pp. 979-988 ◽  
Author(s):  
Paolo Gelosa ◽  
Davide Lecca ◽  
Marta Fumagalli ◽  
Dorota Wypych ◽  
Alice Pignieri ◽  
...  

The ADP-responsive P2Y12 receptor is expressed on both platelets and microglia. Clinical data show that ticagrelor, a direct-acting, reversibly binding P2Y12-receptor antagonist, reduces total cardiovascular events, including stroke. In our present study, we investigated the expression of P2Y12 receptors and the effects of ticagrelor on brain injury in Sprague-Dawley rats subjected to a permanent middle cerebral artery occlusion (MCAo). Rats were treated per os with ticagrelor 3 mg/kg or vehicle at 10 minutes, 22, and 36 hours after MCAo and killed after 48 hours. Immunofluorescence analysis showed an ischemia-related modulation of the P2Y12 receptor, which is constitutively expressed in Iba1+ resting microglia. After MCAo, activated microglia was mainly concentrated around the lesion, with fewer cells present inside the ischemic core. Ticagrelor significantly attenuated the evolution of ischemic damage—evaluated by magnetic resonance imaging (MRI) at 2, 24, and 48 hours after MCAo—, the number of infiltrating cells expressing the microglia/monocyte marker ED-1, the cerebral expression of proinflammatory mediators (interleukin 1 (IL-1), monocyte chemoattractant protein 1 (MCP-1), nitric oxide synthase (iNOS)) and the associated neurologic impairment. In transgenic fluorescent reporter CX3CR1-green fluorescent protein (GFP) mice, 72 hours after MCAo, ticagrelor markedly reduced GFP+ microglia and both early and late infiltrating blood-borne cells. Finally, in primary cultured microglia, ticagrelor fully inhibited ADP-induced Chemotaxis ( P<0.01). Our results show that ticagrelor is protective against ischemia-induced cerebral injury and this effect is mediated, at least partly, by inhibition of P2Y12-mediated microglia activation and Chemotaxis.

Circulation ◽  
2008 ◽  
Vol 118 (suppl_18) ◽  
Author(s):  
Michele Ciccarelli ◽  
Giuseppe Rengo ◽  
Kurt Chuprun ◽  
Gaetano Santulli ◽  
Bruno Trimarco ◽  
...  

The beta adrenergic receptor (βAR) kinase, GRK2, is upregulated and participates to the evolution of heart failure (HF) through downregulation and desensitization of βARs. Recent studies showed that this molecule affects insulin signaling and reduce glucose uptake in hepatocytes and adipocytes. We hypothesized that in HF, GRK2 reduces cardiac performance also through inhibition of cardiac glucose metabolism. In 12 week old Sprague/Dawley rats, we measured cardiac glucose uptake by PET 3 days, 3 and 6 weeks after myocardial infarction (MI). Function and cardiac dimensions were measured by echocardiography. We observed that glucose uptake was reduced in animal post-MI at 3 and 6 weeks respect to healthy animals (3 rd week: 1.3±0.22 vs 2.1±0.3; 6 th week: 1±0.1 vs 2.4±0.2, ml/min/g, p<0.05). No difference was observed in glucose uptake acutely after surgery. Echo showed cardiac dilation and reduced function at 6 weeks (LVD: 9.2± 0.3 vs 7.2± 0.4 mm; EF: 42%±1.1 vs 66%±2.2, p<0.05, Sham vs MI). To inhibit GRK2 in the heart during post-ischemic HF, we delivered the GRK2 inhibitor βARKct by adeno-associated type 6 virus (AAV6) to the left ventricle before induction of the MI. As a control we treated rats with AAV6 encoding for the green fluorescent protein (GFP). Cardiac dilation and function were preserved after 6 weeks post MI in AAV6 βARKct respect to AAV6GFP rats (LVD: 7.73 ±0.25 vs 9.9 ±0.8 mm; EF: 55%±2.25 vs 44%±2, p<0.05). Glucose uptake was better preserved in AAV6βARKct rats after 3 and 6 weeks post MI respect to AAV6GFP group (3rd week: 2.3±0.3 vs 1.2±0.2; 6th week: 1.8±0.2 vs 1.1±0.05, ml/min/g, p<0.05). Since Akt mediates most of the anabolic effects of insulin in cells, we evaluated the effects of GRK2 overexpression by adenovirus (ADGRK2) in neonatal cardiomyocytes (NRVMs) on Akt phosphorylation later on insulin stimulation (ins, 10 – 6 M). As control we induced overexpression of GFP by adenovirus (ADGFP). We observed reduced activation of Akt in presence of GRK2 overexpression as compared to the ADGFP treated cells (1.2±0.2- vs. 3.5±0.4- fold activation over basal, p<0.05). Our data show that post MI, impaired glucose extraction precedes development of HF, and that early GRK2 inhibition prevents impaired myocardial glucose uptake and HF development.


Blood ◽  
1999 ◽  
Vol 94 (2) ◽  
pp. 572-578 ◽  
Author(s):  
Mineo Iwata ◽  
Jeff Vieira ◽  
Michael Byrne ◽  
Heidi Horton ◽  
Beverly Torok-Storb

Abstract A Toledo strain cytomegalovirus (CMV) containing the gene for green fluorescent protein (GFP) under the control of elongation factor-1 promoter was used to study infection of human marrow stromal cells. Two stromal cell lines were used: HS-5, which secretes copious amounts of known cytokines and interleukins; and HS-27a, which does not secrete these activities. CMV growth and spread was monitored by counting green plaques and quantitating GFP intensity. Initial studies indicated that, whereas HS-5 and 27a have similar susceptibilities to infection, as evidenced by the same number of GFP+ cells at day 2, HS-5 appears more resistant to growth and spread of CMV. Furthermore, conditioned media from HS-5 (HS-5 CM) inhibited CMV plaque formation in HS-27a, suggesting that factors secreted by HS-5 are responsible for limiting CMV growth. Neutralizing antibodies against interleukin-1 (IL-1) and IL-1β completely blocked the ability of HS-5 CM to limit viral growth, suggesting that IL-1, which is known to be present in HS-5 CM, is responsible for this effect. When exogenous IL-1β was added to CMV-infected HS-27a, both the number of plaques and the intensity of GFP was significantly reduced in IL-1–treated HS-27a compared with untreated HS-27a (the number of plaques by day 18 was 20 ± 3 v 151 ± 12/well, respectively; GFP intensity was 535 ± 165 v 6,516 ± 652/well, respectively, in 4 separate experiments). At day 21, when IL-1β–treated, CMV-infected cultures were passaged and then cultured in the absence of IL-1β, CMV growth progressed with the kinetics of the original untreated culture, indicating that the IL-1β effect is reversible. Because HS-27a expresses the type I IL-1 receptor, we speculate that the antiviral effects are mediated through IL-1–induced changes in cellular gene expression. DNA chip analysis of mRNA from IL-1β–treated and nontreated HS-27a cells has identified some candidate molecules.


2013 ◽  
Vol 305 (9) ◽  
pp. R1031-R1039 ◽  
Author(s):  
Chandra Sekhar Bathina ◽  
Anuradha Rajulapati ◽  
Michelle Franzke ◽  
Kenta Yamamoto ◽  
J. Thomas Cunningham ◽  
...  

Noradrenergic A2 neurons in nucleus tractus solitarius (NTS) respond to stressors such as hypoxia. We hypothesize that tyrosine hydroxylase (TH) knockdown in NTS reduces cardiovascular responses to chronic intermittent hypoxia (CIH), a model of the arterial hypoxemia observed during sleep apnea in humans. Adult male Sprague-Dawley rats were implanted with radiotelemetry transmitters and adeno-associated viral constructs with green fluorescent protein (GFP) reporter having either short hairpin RNA (shRNA) for TH or scrambled virus (scRNA) were injected into caudal NTS. Virus-injected rats were exposed to 7 days of CIH (alternating periods of 10% O2 and of 21% O2 from 8 AM to 4 PM; from 4 PM to 8 AM rats were exposed to 21% O2). CIH increased mean arterial pressure (MAP) and heart rate (HR) during the day in both the scRNA ( n = 14, P < 0.001 MAP and HR) and shRNA ( n = 13, P < 0.001 MAP and HR) groups. During the night, MAP and HR remained elevated in the scRNA rats ( P < 0.001 MAP and HR) but not in the shRNA group. TH immunoreactivity and protein were reduced in the shRNA group. FosB/ΔFosB immunoreactivity was decreased in paraventricular nucleus (PVN) of shRNA group ( P < 0.001). However, the shRNA group did not show any change in the FosB/ΔFosB immunoreactivity in the rostral ventrolateral medulla. Exposure to CIH increased MAP which persisted beyond the period of exposure to CIH. Knockdown of TH in the NTS reduced this CIH-induced persistent increase in MAP and reduced the transcriptional activation of PVN. This indicates that NTS A2 neurons play a role in the cardiovascular responses to CIH.


2009 ◽  
Vol 30 (3) ◽  
pp. 603-615 ◽  
Author(s):  
Anna Smirkin ◽  
Hiroaki Matsumoto ◽  
Hisaaki Takahashi ◽  
Akihiro Inoue ◽  
Masahiko Tagawa ◽  
...  

In a transient 90-min middle cerebral artery occlusion (MCAO) model of rats, a large ischemic lesion is formed where macrophage-like cells massively accumulate, many of which express a macrophage marker, Iba1, and an oligodendrocyte progenitor cell marker, NG2 chondroitin sulfate proteoglycan (NG2); therefore, the cells were termed BINCs (Brain Iba1+/NG2+Cells). A bone marrow transplantation experiment using green-fluorescent protein-transgenic rats showed that BINCs were derived from bone marrow. 5-Fluorouracil (5FU) injection at 2 days post reperfusion (2 dpr) markedly reduced the number of BINCs at 7 dpr, causing enlargement of necrotic volumes and frequent death of the rats. When isolated BINCs were transplanted into 5FU-aggravated ischemic lesion, the volume of the lesion was much reduced. Quantitative real-time RT-PCR showed that BINCs expressed mRNAs encoding bFGF, BMP2, BMP4, BMP7, GDNF, HGF, IGF-1, PDGF-A, and VEGF. In particular, BINCs expressed IGF-1 mRNA at a very high level. Immunohistochemical staining showed that IGF-1-expressing BINCs were found not only in rat but also human ischemic brain lesions. These results suggest that bone marrow-derived BINCs play a beneficial role in ischemic brain lesions, at least in part, through secretion of neuroprotective factors.


2015 ◽  
Vol 93 (6) ◽  
pp. 465-473 ◽  
Author(s):  
Jaime H. Gómez-Zamudio ◽  
Rebeca García-Macedo ◽  
Martha Lázaro-Suárez ◽  
Maximiliano Ibarra-Barajas ◽  
Jesús Kumate ◽  
...  

Glycine has been used to reduce oxidative stress and proinflammatory mediators in some metabolic disorders; however, its effect on the vasculature has been poorly studied. The aim of this work was to explore the effect of glycine on endothelial dysfunction in aged rats. Aortic rings with intact or denuded endothelium were obtained from untreated or glycine-treated male Sprague–Dawley rats at 5 and 15 months of age. Concentration–response curves to phenylephrine (PHE) were obtained from aortic rings incubated with NG-nitro-l-arginine methyl ester (l-NAME), superoxide dismutase (SOD), indomethacin, SC-560, and NS-398. Aortic mRNA expression of endothelial nitric oxide synthase (eNOS), NADPH oxidase 4 (NOX-4), cyclooxygenase 1 (COX-1), cyclooxygenase 2 (COX-2), tumour necrosis factor (TNF)-α, and interleukin-1 β was measured by real time RT–PCR. The endothelial modulation of the contraction by PHE was decreased in aortic rings from aged rats. Glycine treatment improved this modulator effect and increased relaxation to acetylcholine. Glycine augmented the sensitivity for PHE in the presence of l-NAME and SOD. It also reduced the contraction by incubation with indomethacin, SC-560, and NS-398. Glycine increased the mRNA expression of eNOS and decreased the expression of COX-2 and TNF-α. Glycine improved the endothelium function in aged rats possibly by enhancing eNOS expression and reducing the role of superoxide anion and contractile prostanoids that increase the nitric oxide bioavailability.


2013 ◽  
Vol 79 (7) ◽  
pp. 2218-2224 ◽  
Author(s):  
Jeffrey L. Bose ◽  
Paul D. Fey ◽  
Kenneth W. Bayles

ABSTRACTThebursa aurealistransposon has been used to create transposon insertion libraries ofBacillus anthracisandStaphylococcus aureus. To provide a set of genetic tools to enhance the utility of these libraries, we generated an allelic-exchange system that allows for the replacement of the transposon with useful genetic markers and fluorescent reporter genes. These tools were tested in the Nebraska Transposon Mutant Library (NTML), containing defined transposon insertions in 1,952 nonessentialS. aureusgenes. First, we generated a plasmid that allows researchers to replace the genes encoding green fluorescent protein (GFP) and erythromycin resistance in the transposon with a noncoding DNA fragment, leaving a markerless mutation within the chromosome. Second, we produced allelic-exchange plasmids to replace the transposon with alternate antibiotic resistance cassettes encoding tetracycline, kanamycin, and spectinomycin resistance, allowing for the simultaneous selection of multiple chromosomal mutations. Third, we generated a series of fluorescent reporter constructs that, after allelic exchange, generate transcriptional reporters encoding codon-optimized enhanced cyan fluorescent protein (ECFP), enhanced yellow fluorescent protein (EYFP), DsRed.T3(DNT), and eqFP650, as well as superfolder green fluorescent protein (sGFP). Overall, combining the NTML with this allelic-exchange system provides an unparalleled resource for the study ofS. aureus.


2004 ◽  
Vol 70 (12) ◽  
pp. 7530-7538 ◽  
Author(s):  
Christopher J. Reuter ◽  
Julie A. Maupin-Furlow

ABSTRACT Proteasomes are energy-dependent proteases that are central to the quality control and regulated turnover of proteins in eukaryotic cells. Dissection of this proteolytic pathway in archaea, however, has been hampered by the lack of substrates that are easily detected in whole cells. In the present study, we developed a convenient reporter system by functional expression of a green fluorescent protein variant with C-terminal fusions in the haloarchaeon Haloferax volcanii. The levels of this reporter protein correlated with whole-cell fluorescence that was readily detected in culture. Accumulation of the reporter protein was dependent on the sequence of the C-terminal amino acid fusion, as well as the presence of an irreversible, proteasome-specific inhibitor (clasto-lactacystin β-lactone). This inhibitor was highly specific for H. volcanii 20S proteasomes, with a Ki of ∼40 nM. In contrast, phenylmethanesulfonyl fluoride did not influence the levels of fluorescent reporter protein or inhibit 20S proteasomes. Together, these findings provide a powerful tool for the elucidation of protein substrate recognition motifs and the identification of new genes which may be involved in the proteasome pathway of archaea.


PeerJ ◽  
2016 ◽  
Vol 4 ◽  
pp. e2269 ◽  
Author(s):  
Bat-Erdene Jugder ◽  
Jeffrey Welch ◽  
Nady Braidy ◽  
Christopher P. Marquis

Hydrogenases are metalloenzymes that reversibly catalyse the oxidation or production of molecular hydrogen (H2). Amongst a number of promising candidates for application in the oxidation of H2is a soluble [Ni–Fe] uptake hydrogenase (SH) produced byCupriavidus necatorH16. In the present study, molecular characterisation of the SH operon, responsible for functional SH synthesis, was investigated by developing a green fluorescent protein (GFP) reporter system to characterise PSHpromoter activity using several gene cloning approaches. A PSHpromoter-gfp fusion was successfully constructed and inducible GFP expression driven by the PSHpromoter under de-repressing conditions in heterotrophic growth media was demonstrated in the recombinantC. necatorH16 cells. Here we report the first successful fluorescent reporter system to study PSHpromoter activity inC. necatorH16. The fusion construct allowed for the design of a simple screening assay to evaluate PSHactivity. Furthermore, the constructed reporter system can serve as a model to develop a rapid fluorescent based reporter for subsequent small-scale process optimisation experiments for SH expression.


2011 ◽  
Vol 301 (4) ◽  
pp. L461-L477 ◽  
Author(s):  
Linghui Zhang ◽  
Kevin Yu ◽  
Kyle W. Robert ◽  
Kristine M. DeBolt ◽  
Nankang Hong ◽  
...  

Rab38 is a rat Hermansky-Pudlak syndrome gene that plays an important role in surfactant homeostasis in alveolar type II (ATII) pneumocytes. We examined Rab38 function in regulating lamellar body (LB) morphology in ATII cells. Quantitative electron microscopy revealed that LBs in ATII cells were ∼77% larger in Rab38-null fawn-hooded hypertension (FHH) than control Sprague-Dawley (SD) rats. Rab38 protein expression was restricted in lung epithelial cells but was not found in primary endothelial cells. In SD ATII cells, Rab38 protein level gradually declined during 5 days in culture. Importantly, endogenous Rab38 was present in LB fractions purified from SD rat lungs, and transiently expressed enhanced green fluorescent protein (EGFP)-tagged Rab38 labeled only the limiting membranes of a subpopulation (∼30%) of LBs in cultured ATII cells. This selective targeting was abolished by point mutations to EGFP-Rab38 and was not shared by Rab7 and Rab4b, which also function in the ATII cells. Using confocal microscopy, we established a method for quantitative evaluation of the enlarged LB phenotype temporally preserved in cultured FHH ATII cells. A direct causal relationship was established when the enlarged LB phenotype was reserved and then rescued by transiently reexpressed EGFP-Rab38 in cultured FHH ATII cells. This rescuing effect was associated with dynamic EGFP-Rab38 targeting to and on LB limiting membranes. We conclude that Rab38 plays an indispensible role in maintaining LB morphology and surfactant homeostasis in ATII pneumocytes.


Sign in / Sign up

Export Citation Format

Share Document