scholarly journals Dietary intake and household exposures as predictors of urinary concentrations of high molecular weight phthalates and bisphenol A in a cohort of adolescents

Author(s):  
Anna R. Smith ◽  
Katherine R. Kogut ◽  
Kimberly Parra ◽  
Asa Bradman ◽  
Nina Holland ◽  
...  

Abstract Background Phthalates and bisphenol A (BPA) are endocrine disrupting chemicals used in consumer products, building materials, and food processing and packaging materials. They are associated with adverse health outcomes, especially when exposure occurs during heightened windows of susceptibility. Objective We evaluated the relationship between housing and dietary characteristics and the concentration of several high-molecular-weight (HMW) phthalate metabolites and BPA in a cohort of Latina adolescents. Methods We collected information on recent food consumption and housing characteristics and quantified the concentration of HMW phthalate and BPA metabolites in urine collected at two different time points. We used generalized estimating equations (GEE) to assess predictors of each metabolite. Results No significant associations were observed between housing and dietary characteristics and metabolites of di(2-ethylhexyl) phthalate (DEHP) or BPA. In contrast, higher urinary monobenzyl phthalate (MBzP) concentration was associated with living in a home with vinyl or linoleum flooring (66.7% change, p-value <0.01), while higher urinary mono(3-carboxypropyl) phthalate (MCPP) concentration was associated with recent consumption of coffee (47.2% change, p-value <0.01), and fast food (30.3% change, p-value <0.05). Significance These findings may be useful in targeting interventions that reduce phthalate uptake in young adults.

2021 ◽  
Author(s):  
Fabrizia Carli ◽  
Demetrio Ciociaro ◽  
Amalia Gastaldelli

AbstractExposomics analyses have highlighted the importance of biomonitoring of human exposure to pollutants, even non-persistent, for the prevention of non-communicable diseases like obesity, diabetes, non-alcoholic fatty liver disease, atherosclerosis and cardiovascular diseases. Phthalates and bisphenol A (BPA) are endocrine disrupting chemicals (EDCs) widely used in industry and in a large range of daily life products that increase the risk of endocrine and cardiometabolic diseases especially if the exposure starts during childhood. Thus, it is important the biomonitoring of exposure to these compounds not only in adulthood but also in childhood. This was the goal of the LIFE-PERSUADED project that measured the exposure to phthalates (DEHP metabolites, MEHP, MEHHP, MEOHP) and BPA in Italian mother-children couples of different ages. In this paper we describe the method that was set up for the LIFE PERSUADED project and validated during in the proficiency test (ICI/EQUAS) showing that accurate determination of urinary phthalates and BPA can be achieved starting from small sample size (0.5ml) using two MS techniques applied in cascade on the same deconjugated matrix.


Author(s):  
Ge Liu ◽  
Wei Cai ◽  
Huan Liu ◽  
Haihong Jiang ◽  
Yongyi Bi ◽  
...  

Background: Breast cancer is the most common cancer and the second leading cause of cancer-related death amongst American women. Endocrine-disrupting chemicals (EDCs), especially bisphenol A (BPA) and phthalates, have adverse effects on human health. However, the association of BPA and phthalates with breast cancer remains conflicting. This study aims to investigate the association of BPA and phthalates with breast cancer. Methods: Correlative studies were identified by systematically searching three electronic databases, namely, PubMed, Web of Sciences, and Embase, up to November 2020. All data were analyzed using Stata 15.0. Results: A total of nine studies, consisting of 7820 breast cancer cases and controls, were included. The urinary phthalate metabolite mono-benzyl phthalate (MBzP) and mono-2-isobutyl phthalate (MiBP) were negatively associated with breast cancer (OR = 0.73, 95% CI: 0.60–0.90; OR = 0.75, 95% CI: 0.58–0.98, respectively). However, the overall ORs for BPA, mono-ethyl phthalate (MEP), mono-(2-ethyl-5-hydroxyhexyl) phthalate (MEHHP), mono-2-ethylhexyl phthalate (MEHP), mono-(2-ethyl-5-oxohexyl) phthalate (MEOHP), mono-(3-carboxypropyl) phthalate (MCPP), and mono-butyl phthalate (MBP) were 0.85 (95% CI: 0.69–1.05), 0.96 (95% CI: 0.62–1.48), 1.12 (95% CI: 0.88–1.42), 1.13 (95% CI: 0.74–1.73), 1.01 (95% CI: 0.74–1.40), 0.74 (95% CI: 0.48–1.14), and 0.80 (95% CI: 0.55–1.15), respectively, suggesting no significant association. The sensitivity analysis indicated that the results were relatively stable. Conclusion: Phthalate metabolites MBzP and MiBP were passively associated with breast cancer, whereas no associations were found between BPA, MEP, MEHHP, MEHP, MEOHP, MCPP, and MBP and breast cancer. More high-quality case-control studies or persuasive cohort studies are urgently needed to draw the best conclusions.


2005 ◽  
Vol 40 (4) ◽  
pp. 484-490 ◽  
Author(s):  
Keun J. Choi ◽  
Sang G. Kim ◽  
Chang W. Kim ◽  
Seung H. Kim

Abstract This study examined the effect of polyphosphate on removal of endocrine-disrupting chemicals (EDCs) such as nonylphenol and bisphenol-A by activated carbons. It was found that polyphosphate aided in the removal of nonylphenol and bisphenol- A. Polyphosphate reacted with nonylphenol, likely through dipole-dipole interaction, which then improved the nonylphenol removal. Calcium interfered with this reaction by causing competition. It was found that polyphosphate could accumulate on carbon while treating a river. The accumulated polyphosphate then aided nonylphenol removal. The extent of accumulation was dependent on the type of carbon. The accumulation occurred more extensively with the wood-based used carbon than with the coal-based used carbon due to the surface charge of the carbon. The negatively charged wood-based carbon attracted the positively charged calcium-polyphosphate complex more strongly than the uncharged coal-based carbon. The polyphosphate-coated activated carbon was also effective in nonylphenol removal. The effect was different depending on the type of carbon. Polyphosphate readily attached onto the wood-based carbon due to its high affinity for polyphosphate. The attached polyphosphate then improved the nonylphenol removal. However, the coating failed to attach polyphosphate onto the coal-based carbon. The nonylphenol removal performance of the coal-based carbon remained unchanged after the polyphosphate coating.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Diksha Sirohi ◽  
Ruqaiya Al Ramadhani ◽  
Luke D. Knibbs

AbstractPurposeEndocrine-related diseases and disorders are on the rise globally. Synthetically produced environmental chemicals (endocrine-disrupting chemicals (EDCs)) mimic hormones like oestrogen and alter signalling pathways. Endometriosis is an oestrogen-dependent condition, affecting 10–15% of women of the reproductive age, and has substantial impacts on the quality of life. The aetiology of endometriosis is believed to be multifactorial, ranging from genetic causes to immunologic dysfunction due to environmental exposure to EDCs. Hence, we undertook a systematic review and investigated the epidemiological evidence for an association between EDCs and the development of endometriosis. We also aimed to assess studies on the relationship between body concentration of EDCs and the severity of endometriosis.MethodFollowing PRISMA guidelines, a structured search of PubMed, Embase and Scopus was conducted (to July 2018). The included studies analysed the association between one or more EDCs and the prevalence of endometriosis. The types of EDCs, association and outcome, participant characteristics and confounding variables were extracted and analysed. Quality assessment was performed using standard criteria.ResultsIn total, 29 studies were included. Phthalate esters were positively associated with the prevalence of endometriosis. The majority (71%) of studies revealed a significant association between bisphenol A, organochlorinated environmental pollutants (dioxins, dioxin-like compounds, organochlorinated pesticides, polychlorinated biphenyls) and the prevalence of endometriosis. A positive association between copper, chromium and prevalence of endometriosis was demonstrated in one study only. Cadmium, lead and mercury were not associated with the prevalence of endometriosis. There were conflicting results for the association between nickel and endometriosis. The relationship of EDCs and severity of endometriosis was not established in the studies.ConclusionWe found some evidence to suggest an association between phthalate esters, bisphenol A, organochlorinated environmental pollutants and the prevalence of endometriosis. Disentangling these exposures from various other factors that affect endometriosis is complex, but an important topic for further research.


2020 ◽  
Vol 30 (Supplement_5) ◽  
Author(s):  
E Haverinen ◽  
R Lange ◽  
H Tolonen

Abstract Increasing prevalence of metabolic syndrome (MetS) is causing significant health burden among the European population. Current knowledge supports the notion that endocrine disrupting chemicals (EDCs) interfere with human metabolism and hormonal balance, contributing to the conventionally recognized life-style related risk factors for MetS. In relation to the Human biomonitoring initiative (HBM4EU) five priority substances (Bisphenol A, Per- and polyfluoroalkyl substances (PFASs), Phthalates, Cadmium and Arsenic) and their association with adverse metabolic health effects were examined. A methodological framework for scoping reviews was followed to increase consistency and transparency throughout the process. A literature review was conducted to identify epidemiological studies focusing on the association between MetS or its individual components and the five HBM4EU priority substances. Human biomonitoring studies have been able to present evidence supporting EDC exposure and development of individual MetS components; however the strength of the association varies between the components and EDCs. Most of the identified literature examined Bisphenol A and Phthalate exposure, usually targeting obesity, anthropometrics or glucose metabolism. Evidence suggests a positive association between Bisphenol A and Phthalate exposure and obesity-related components. The substance group of PFASs indicated weakest association, as the results were inconsistent and were suggestive only for a positive association with development of dyslipidaemia. Current evidence on metabolic disturbances and EDCs are inconclusive and fragmented, hence establishing harmonized and standardized human biomonitoring procedures among the European population are needed. Rigorous and ongoing human biomonitoring in combination with health monitoring could provide comprehensive information on EDC exposure and association of metabolic disturbances. Key messages EDC exposure is ubiquitous within European population, hence more human biomonitoring in combination with health surveys is needed to strengthen knowledge on human’s metabolic health. MetS is an increasing global health concern, which requires novel approaches to tackle the challenge.


2021 ◽  
Vol 3 ◽  
Author(s):  
Radha Dutt Singh ◽  
Kavita Koshta ◽  
Ratnakar Tiwari ◽  
Hafizurrahman Khan ◽  
Vineeta Sharma ◽  
...  

Developmental origin of health and disease postulates that the footprints of early life exposure are followed as an endowment of risk for adult diseases. Epidemiological and experimental evidence suggest that an adverse fetal environment can affect the health of offspring throughout their lifetime. Exposure to endocrine disrupting chemicals (EDCs) during fetal development can affect the hormone system homeostasis, resulting in a broad spectrum of adverse health outcomes. In the present review, we have described the effect of prenatal EDCs exposure on cardio-metabolic-renal health, using the available epidemiological and experimental evidence. We also discuss the potential mechanisms of their action, which include epigenetic changes, hormonal imprinting, loss of energy homeostasis, and metabolic perturbations. The effect of prenatal EDCs exposure on cardio-metabolic-renal health, which is a complex condition of an altered biological landscape, can be further examined in the case of other environmental stressors with a similar mode of action.


2013 ◽  
Vol 765-767 ◽  
pp. 2944-2948 ◽  
Author(s):  
Xiao Ling Shao ◽  
Wen Qi Zhong ◽  
Xiao Yan Ma ◽  
Ang Gao ◽  
Xiang Yang Wu ◽  
...  

Yeast two-hybrid system was used to investigate the estrogenic activities of 13 kinds of representative endocrine disrupting chemicals (EDCs) and their combinary effects. Results show that the order of estrogenic potencies for these chemicals is: 17α-ethynylestradiol>diethylstilbestrol >17β-estradiol>estrone>estriol>branchedp-nonylphenol>4-t-octylphenol>bisphenol A>diethyl phthalate>4-n-nonylphenol>di-(2-ethylhexyl) phthalate>dibutyl phthalate>dimethyl phthalate. The mixture effects of multiple EDCs were compared to those obtained from individual chemicals, using the model of concentration addition. Results reveal that the estrogenicities of multicomponent mixtures of more than three (including three) of EDCs follow antagonistic effects, while there is no definite conclusion for binary systems. The less than additive effects were also confirmed in the spiked experiments conducted in the extracts of real water samples.


2018 ◽  
Vol 69 (3) ◽  
pp. 155-173 ◽  
Author(s):  
Werner Brueller ◽  
Norbert Inreiter ◽  
Thomas Boegl ◽  
Martin Rubasch ◽  
Samim Saner ◽  
...  

Summary Endocrine disrupting chemicals (EDCs) can cause adverse effects in individuals and their offspring. In 2017 and 2018, we performed a survey on representative samples of Austrian drinking water (n = 20), groundwater (n = 22), and surface water (n = 12), the latter including bathing water (n = 5) and rivers (n = 7). We analyzed 54 samples for 28 parameters, including estrogens, polybrominated diphenylethers (PBDEs), phthalates, perfluoroalkyl substances, alkylphenols, bisphenol A and triclosan, correlating to 1512 measurements. In 39 of the 54 samples (72.2%), at least one endocrine disrupting or potentially disrupting chemical was found at or above the limit of quantification. None of the samples yielded estrogens or triclosan in detectable levels. Bisphenol A (BPA) was detected in 4 (20.0%) samples of drinking water, in 1 (4.5%) groundwater sample, and in 1 (20%) bathing water sample, with a maximum concentration of 0.021 μg/l found in one drinking water. Two drinking water samples yielded BPA in concentrations above the limit value of 0.01 μg/l, recently proposed by the European Commission for drinking water. Therefore, the ultimate public health goal must be to further reduce and restrict the production of EDCs and therewith decrease and eventually eliminate the contamination of drinking water resources.


Chemosphere ◽  
2018 ◽  
Vol 193 ◽  
pp. 321-328 ◽  
Author(s):  
Tyler Pollock ◽  
Rachel E. Weaver ◽  
Ramtin Ghasemi ◽  
Denys deCatanzaro

Sign in / Sign up

Export Citation Format

Share Document