scholarly journals Divergence of a genomic island leads to the evolution of melanization in a halophyte root fungus

2021 ◽  
Author(s):  
Zhilin Yuan ◽  
Irina S. Druzhinina ◽  
John G. Gibbons ◽  
Zhenhui Zhong ◽  
Yves Van de Peer ◽  
...  

AbstractUnderstanding how organisms adapt to extreme living conditions is central to evolutionary biology. Dark septate endophytes (DSEs) constitute an important component of the root mycobiome and they are often able to alleviate host abiotic stresses. Here, we investigated the molecular mechanisms underlying the beneficial association between the DSE Laburnicola rhizohalophila and its host, the native halophyte Suaeda salsa, using population genomics. Based on genome-wide Fst (pairwise fixation index) and Vst analyses, which compared the variance in allele frequencies of single-nucleotide polymorphisms (SNPs) and copy number variants (CNVs), respectively, we found a high level of genetic differentiation between two populations. CNV patterns revealed population-specific expansions and contractions. Interestingly, we identified a ~20 kbp genomic island of high divergence with a strong sign of positive selection. This region contains a melanin-biosynthetic polyketide synthase gene cluster linked to six additional genes likely involved in biosynthesis, membrane trafficking, regulation, and localization of melanin. Differences in growth yield and melanin biosynthesis between the two populations grown under 2% NaCl stress suggested that this genomic island contributes to the observed differences in melanin accumulation. Our findings provide a better understanding of the genetic and evolutionary mechanisms underlying the adaptation to saline conditions of the L. rhizohalophila–S. salsa symbiosis.

2021 ◽  
Author(s):  
Linlin Zhao ◽  
Fangyuan Qu ◽  
Na Song ◽  
Zhiqiang Han ◽  
Tianxiang Gao ◽  
...  

Abstract Background: Understanding the genetic structure and local adaptive evolutionary mechanisms of marine organisms is crucial for the conservation and management of biological resources. Collichthys lucidus is an ideal candidate for investigating population differentiation and local adaptation under heterogeneous environmental pressure. Results: To elucidate the fine-scale genetic structure and local thermal adaptation of C. lucidus, we performed restriction site-associated DNA tag sequencing (RAD-seq) of 177 individuals from 8 populations, and a total of 184,708 high-quality single nucleotide polymorphisms (SNPs) were identified. All the results revealed significant population structure with high support for two distinct genetic clusters, namely, the northern group (populations DL, TJ, LYG, NT, ZS, and WZ) and southern group (populations XM and ZH). The genetic diversity of the southern group was evidently lower than that of the northern group, which indicated that the southern group was possibly under climate-driven natural selection. In addition, a total of 314 SNPs were found to be significantly associated with temperature variation. Annotations of temperature-related SNPs suggested that genes involved in material (protein, lipid, and carbohydrate) metabolism and immune responses were critical for adaptation to spatially heterogeneous temperatures in natural C. lucidus populations. Conclusion: In the context of anthropogenic activities and environmental change, the results of the present population genomic work could make important contributions to the understanding of genetic differentiation and adaptation to changing environments.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Linlin Zhao ◽  
Fangyuan Qu ◽  
Na Song ◽  
Zhiqiang Han ◽  
Tianxiang Gao ◽  
...  

Abstract Background Understanding the genetic structure and local adaptive evolutionary mechanisms of marine organisms is crucial for the management of biological resources. As the ecologically and commercially important small-sized shallow-sea fish, Collichthys lucidus plays a vital role in the structure and functioning of marine ecosystem processes. C. lucidus has been shown to have an obvious population structure. Therefore, it is an ideal candidate for investigating population differentiation and local adaptation under heterogeneous environmental pressure. Results A total of 184,708 high-quality single nucleotide polymorphisms (SNPs) were identified and applied to elucidate the fine-scale genetic structure and local thermal adaptation of 8 C. lucidus populations. Population structure analysis based on all SNPs indicated that the northern group and southern group of C. lucidus have a strong differentiation. Moreover, 314 SNPs were found to be significantly associated with temperature variation, and annotations of genes containing temperature-related SNPs suggested that genes were involved in material (protein, lipid, and carbohydrate) metabolism and immune responses. Conclusion The high genetic differentiation of 8 C. lucidus populations may have been caused by long-term geographic isolation during the glacial period. Moreover, we suspected that variation in these genes associated with material (protein, lipid, and carbohydrate) metabolism and immune responses was critical for adaptation to spatially heterogeneous temperatures in natural C. lucidus populations. In conclusion, this study could help us determine how C. lucidus populations will respond to future ocean temperature rising.


2021 ◽  
Vol 7 (3) ◽  
pp. eabd9036
Author(s):  
Sara Saez-Atienzar ◽  
Sara Bandres-Ciga ◽  
Rebekah G. Langston ◽  
Jonggeol J. Kim ◽  
Shing Wan Choi ◽  
...  

Despite the considerable progress in unraveling the genetic causes of amyotrophic lateral sclerosis (ALS), we do not fully understand the molecular mechanisms underlying the disease. We analyzed genome-wide data involving 78,500 individuals using a polygenic risk score approach to identify the biological pathways and cell types involved in ALS. This data-driven approach identified multiple aspects of the biology underlying the disease that resolved into broader themes, namely, neuron projection morphogenesis, membrane trafficking, and signal transduction mediated by ribonucleotides. We also found that genomic risk in ALS maps consistently to GABAergic interneurons and oligodendrocytes, as confirmed in human single-nucleus RNA-seq data. Using two-sample Mendelian randomization, we nominated six differentially expressed genes (ATG16L2, ACSL5, MAP1LC3A, MAPKAPK3, PLXNB2, and SCFD1) within the significant pathways as relevant to ALS. We conclude that the disparate genetic etiologies of this fatal neurological disease converge on a smaller number of final common pathways and cell types.


Pathogens ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 363
Author(s):  
Sulochana K. Wasala ◽  
Dana K. Howe ◽  
Louise-Marie Dandurand ◽  
Inga A. Zasada ◽  
Dee R. Denver

Globodera pallida is among the most significant plant-parasitic nematodes worldwide, causing major damage to potato production. Since it was discovered in Idaho in 2006, eradication efforts have aimed to contain and eradicate G. pallida through phytosanitary action and soil fumigation. In this study, we investigated genome-wide patterns of G. pallida genetic variation across Idaho fields to evaluate whether the infestation resulted from a single or multiple introduction(s) and to investigate potential evolutionary responses since the time of infestation. A total of 53 G. pallida samples (~1,042,000 individuals) were collected and analyzed, representing five different fields in Idaho, a greenhouse population, and a field in Scotland that was used for external comparison. According to genome-wide allele frequency and fixation index (Fst) analyses, most of the genetic variation was shared among the G. pallida populations in Idaho fields pre-fumigation, indicating that the infestation likely resulted from a single introduction. Temporal patterns of genome-wide polymorphisms involving (1) pre-fumigation field samples collected in 2007 and 2014 and (2) pre- and post-fumigation samples revealed nucleotide variants (SNPs, single-nucleotide polymorphisms) with significantly differentiated allele frequencies indicating genetic differentiation. This study provides insights into the genetic origins and adaptive potential of G. pallida invading new environments.


Genes ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 258
Author(s):  
Karim Karimi ◽  
Duy Ngoc Do ◽  
Mehdi Sargolzaei ◽  
Younes Miar

Characterizing the genetic structure and population history can facilitate the development of genomic breeding strategies for the American mink. In this study, we used the whole genome sequences of 100 mink from the Canadian Centre for Fur Animal Research (CCFAR) at the Dalhousie Faculty of Agriculture (Truro, NS, Canada) and Millbank Fur Farm (Rockwood, ON, Canada) to investigate their population structure, genetic diversity and linkage disequilibrium (LD) patterns. Analysis of molecular variance (AMOVA) indicated that the variation among color-types was significant (p < 0.001) and accounted for 18% of the total variation. The admixture analysis revealed that assuming three ancestral populations (K = 3) provided the lowest cross-validation error (0.49). The effective population size (Ne) at five generations ago was estimated to be 99 and 50 for CCFAR and Millbank Fur Farm, respectively. The LD patterns revealed that the average r2 reduced to <0.2 at genomic distances of >20 kb and >100 kb in CCFAR and Millbank Fur Farm suggesting that the density of 120,000 and 24,000 single nucleotide polymorphisms (SNP) would provide the adequate accuracy of genomic evaluation in these populations, respectively. These results indicated that accounting for admixture is critical for designing the SNP panels for genotype-phenotype association studies of American mink.


1998 ◽  
Vol 111 (7) ◽  
pp. 951-965 ◽  
Author(s):  
D. Drecktrah ◽  
P. de Figueiredo ◽  
R.M. Mason ◽  
W.J. Brown

Previous studies have shown that the Golgi stack and the trans-Golgi network (TGN) may play a role in capturing escaped resident endoplasmic reticulum (ER) proteins, and directing their retrograde transport back to that organelle. Whether this retrograde movement represents a highly specific or more generalized membrane trafficking pathway is unclear. To better understand both the retrograde and anterograde trafficking pathways of the secretory apparatus, we examined more closely the in vivo effects of two structurally unrelated compounds, the potent lipoxygenase inhibitor nordihydroguaiaretic acid (NDGA), and the non-steroidal estrogen cyclofenil diphenol (CFD), both of which are known to inhibit secretion. In the presence of these compounds, transport of vesicular stomatitis virus G membrane glycoprotein from the ER to the Golgi complex, and from the TGN to the cell surface, was inhibited potently and rapidly. Surprisingly, we found that NDGA and CFD stimulated the rapid, but not concomitant, retrograde movement of both Golgi stack and TGN membrane proteins back to the ER until both organelles were morphologically absent from cells. Both NDGA- and CFD-stimulated TGN and Golgi retrograde membrane trafficking were inhibited by microtubule depolymerizing agents and energy poisons. Removal of NDGA and CFD resulted in the complete, but not concomitant, reformation of both Golgi stacks and their closely associated TGN compartments. These studies suggest that NDGA and CFD unmask a generalized bulk recycling pathway to the ER for both Golgi and TGN membranes and, further, that NDGA and CFD are useful for investigating the molecular mechanisms that control the formation and maintenance of both the Golgi stack proper and the TGN.


2021 ◽  
Vol 99 (Supplement_3) ◽  
pp. 76-77
Author(s):  
Seyed Milad Vahedi ◽  
Siavash Salek Ardestani ◽  
Duy Ngoc Do ◽  
Karim Karimi ◽  
Younes Miar

Abstract Body conformation traits such as body height (BH) and body length (BL) have been included in the swine industry’s selection criteria. The objective of this study was to identify the quantitative trait loci (QTLs) and candidate genes for pig conformation traits using an integration of selection signatures analyses and weighted single-step GWAS (WssGWAS). Body measurement records of 5,593 Yorkshire pigs of which 598 animals were genotyped with Illumina 50K panel were used. Estimated breeding values (EBVs) for BH and BL were computed using univariate animal models. Genotyped animals were grouped into top 5% and bottom 5% based on their EBVs, and selection signatures analyses were performed using fixation index (Fst), FLK, hapFLK, and Rsb statistics, which were then combined as a Mahalanobis distance (Md) framework. The WssGWAS was conducted to detect the single nucleotide polymorphisms (SNPs) associated with the studied traits. The top 1% SNPs (n=530) from Md distribution that overlapped with the top 1% SNPs from WssGWAS (n = 530) were used to detect the candidate genes. A total of 31 and six overlapped SNPs were found to be associated with BH and BL, respectively. Several candidate genes were identified for BH (PARVA, DCDC1, SYT1, CASTOR2, RGSL1, RGS8, RBMS3, TGFBR2, and HS6ST1) and BL (SNTB1, AK7, PAPOLA, KSR1, CHODL, and BMP2), explaining 2.58% and 0.42% of the trait’s genetic variation, respectively. Our results indicated that integrating data from the signatures of selection tests with WssGWAS could help elucidate genomic regions underlying complex traits.


2021 ◽  
Vol 99 (Supplement_3) ◽  
pp. 76-76
Author(s):  
Seyed Milad Vahedi ◽  
Karim Karimi ◽  
Siavash Salek Ardestani ◽  
Younes Miar

Abstract Aleutian disease (AD) is a chronic persistent infection in domestic mink caused by Aleutian mink disease virus (AMDV). Female mink’s fertility and pelt quality depression are the main reasons for the AD’s negative economic impacts on the mink industry. A total number of 79 American mink from the Canadian Center for Fur Animal Research at Dalhousie University (Truro, NS, Canada) were classified based on the results of counter immunoelectrophoresis (CIEP) tests into two groups of positive (n = 48) and negative (n = 31). Whole-genome sequences comprising 4,176 scaffolds and 8,039,737 single nucleotide polymorphisms (SNPs) were used to trace the selection footprints for response to AMDV infection at the genome level. Window-based fixation index (Fst) and nucleotide diversity (θπ) statistics were estimated to compare positive and negative animals’ genomes. The overlapped top 1% genomic windows between two statistics were considered as potential regions underlying selection pressures. A total of 98 genomic regions harboring 33 candidate genes were detected as selective signals. Most of the identified genes were involved in the development and functions of immune system (PPP3CA, SMAP2, TNFRSF21, SKIL, and AKIRIN2), musculoskeletal system (COL9A2, PPP1R9A, ANK2, AKAP9, and STRIT1), nervous system (ASCL1, ZFP69B, SLC25A27, MCF2, and SLC7A14), reproductive system (CAMK2D, GJB7, SSMEM1, C6orf163), liver (PAH and DPYD), and lung (SLC35A1). Gene-expression network analysis showed the interactions among 27 identified genes. Moreover, pathway enrichment analysis of the constructed genes network revealed significant oxytocin (KEGG: hsa04921) and GnRH signaling (KEGG: hsa04912) pathways, which are likely to be impaired by AMDV leading to dams’ fecundity reduction. These results provided a perspective to the genetic architecture of response to AD in American mink and novel insight into the pathogenesis of AMDV.


Science ◽  
2021 ◽  
Vol 371 (6533) ◽  
pp. eaay2784
Author(s):  
Margaux M. Pinney ◽  
Daniel A. Mokhtari ◽  
Eyal Akiva ◽  
Filip Yabukarski ◽  
David M. Sanchez ◽  
...  

The mechanisms that underly the adaptation of enzyme activities and stabilities to temperature are fundamental to our understanding of molecular evolution and how enzymes work. Here, we investigate the molecular and evolutionary mechanisms of enzyme temperature adaption, combining deep mechanistic studies with comprehensive sequence analyses of thousands of enzymes. We show that temperature adaptation in ketosteroid isomerase (KSI) arises primarily from one residue change with limited, local epistasis, and we establish the underlying physical mechanisms. This residue change occurs in diverse KSI backgrounds, suggesting parallel adaptation to temperature. We identify residues associated with organismal growth temperature across 1005 diverse bacterial enzyme families, suggesting widespread parallel adaptation to temperature. We assess the residue properties, molecular interactions, and interaction networks that appear to underly temperature adaptation.


1994 ◽  
Vol 267 (1) ◽  
pp. C1-C24 ◽  
Author(s):  
N. A. Bradbury ◽  
R. J. Bridges

Cells can rapidly and reversibly alter solute transport rates by changing the kinetics of transport proteins resident within the plasma membrane. Most notably, this can be brought about by reversible phosphorylation of the transporter. An additional mechanism for acute regulation of plasma membrane transport rates is by the regulated exocytic insertion of transport proteins from intracellular vesicles into the plasma membrane and their subsequent regulated endocytic retrieval. Over the past few years, the number of transporters undergoing this regulated trafficking has increased dramatically, such that what was once an interesting translocation of a few transporters has now become a widespread modality for regulating plasma membrane solute permeabilities. The aim of this article is to review the models proposed for the regulated trafficking of transport proteins and what lines of evidence should be obtained to document regulated exocytic insertion and endocytic retrieval of transport proteins. We highlight four transporters, the insulin-responsive glucose transporter, the antidiuretic hormone-responsive water channel, the urinary bladder H(+)-ATPase, and the cystic fibrosis transmembrane conductance regulator Cl- channel, and discuss the various approaches taken to document their regulated trafficking. Finally, we discuss areas of uncertainty that remain to be investigated concerning the molecular mechanisms involved in regulating the trafficking of proteins.


Sign in / Sign up

Export Citation Format

Share Document