scholarly journals The fungal root endophyte Serendipita vermifera displays inter-kingdom synergistic beneficial effects with the microbiota in Arabidopsis thaliana and barley

2021 ◽  
Author(s):  
Lisa K. Mahdi ◽  
Shingo Miyauchi ◽  
Charles Uhlmann ◽  
Ruben Garrido-Oter ◽  
Gregor Langen ◽  
...  

AbstractPlant root-associated bacteria can confer protection against pathogen infection. By contrast, the beneficial effects of root endophytic fungi and their synergistic interactions with bacteria remain poorly defined. We demonstrate that the combined action of a fungal root endophyte from a widespread taxon with core bacterial microbiota members provides synergistic protection against an aggressive soil-borne pathogen in Arabidopsis thaliana and barley. We additionally reveal early inter-kingdom growth promotion benefits which are host and microbiota composition dependent. Using RNA-sequencing, we show that these beneficial activities are not associated with extensive host transcriptional reprogramming but rather with the modulation of expression of microbial effectors and carbohydrate-active enzymes.

2021 ◽  
Author(s):  
Lisa K. Mahdi ◽  
Shingo Miyauchi ◽  
Charles Uhlmann ◽  
Ruben Garrido-Oter ◽  
Gregor Langen ◽  
...  

AbstractPlant root-associated bacteria can confer protection against pathogen infection. By contrast, the beneficial effects of root endophytic fungi and their synergistic interactions with bacteria remain poorly defined. We demonstrate that the combined action of a fungal root endophyte from a widespread taxon with core bacterial microbiota members provides synergistic protection against an aggressive soil-borne pathogen in Arabidopsis thaliana and barley. We additionally show early inter-kingdom growth promotion benefits which are host and microbiota composition dependent.HighlightsThe root endophytic fungus Serendipita vermifera can functionally replace core bacterial microbiota members in mitigating pathogen infection and disease symptoms.S. vermifera additionally stabilizes and potentiates the protective activities of root-associated bacteria and mitigates the negative effects of a non-native bacterial community in A. thaliana.Inter-kingdom synergistic beneficial effects do not require extensive host transcriptional reprogramming nor high levels of S. vermifera colonisation.Inter-kingdom protective benefits are largely independent of the host while synergism leading to early inter-kingdom growth promotion is driven by host species and microbiota composition.


2012 ◽  
Vol 25 (6) ◽  
pp. 727-737 ◽  
Author(s):  
Urs Lahrmann ◽  
Alga Zuccaro

The genetically tractable endophytic fungus Piriformospora indica is able to colonize the root cortex of a great variety of different plant species with beneficial effects to its hosts, and it represents a suitable model system to study symbiotic interactions. Recent cytological studies in barley and Arabidopsis showed that, upon penetration of the root, P. indica establishes a biotrophic interaction during which fungal cells are encased by the host plasma membrane. Large-scale transcriptional analyses of fungal and plant responses have shown that perturbance of plant hormone homeostasis and secretion of fungal lectins and other small proteins (effectors) may be involved in the evasion and suppression of host defenses at these early colonization steps. At later stages, P. indica is found more often in moribund host cells where it secretes a large variety of hydrolytic enzymes that degrade proteins. This strategy of colonizing plants is reminiscent of that of hemibiotrophic fungi, although a defined shift to necrotrophy with massive host cell death is missing. Instead, the association with the plant root leads to beneficial effects for the host such as growth promotion, increased resistance to root as well as leaf pathogens, and increased tolerance to abiotic stresses. This review describes current advances in understanding the components of the P. indica endophytic lifestyle from molecular and genomic analyses.


2020 ◽  
Vol 36 (1) ◽  
pp. 36-43
Author(s):  
I.O. Konovalova ◽  
T.N. Kudelina ◽  
S.O. Smolyanina ◽  
A.I. Lilienberg ◽  
T.N. Bibikova

A new technique for Arabidopsis thaliana cultivation has been proposed that combines the use of a phytogel-based nutrient medium and a hydrophilic membrane of hydrate cellulose film, separating the root system of the plant from the medium thickness. Growth rates of both main and lateral roots were faster in the plants cultivated on the surface of hydrate cellulose film than in the plants grown in the phytogel volume. The location of the root system on the surface of the transparent hydrate film simplifies its observation and analysis and facilitates plant transplantation with preservation of the root system configuration. The proposed technique allowed us to first assess the effect of exogenous auxin on the growth of lateral roots at the 5-6 developmental stage. methods to study plant root systems, hydrate cellulose film, A. thaliana, lateral roots, differential root growth rate, auxin The work was financially supported by the Russian Foundation for Basic Research (Project Bel_mol_a 19-54-04015) and the basic topic of the Russian Academy of Sciences - IBMP RAS «Regularities of the Influence of Extreme Environmental Factors on the Processes of Cultivation of Higher Plants and the Development of Japanese Quail Tissues at Different Stages of its Ontogenesis under the Conditions of Regenerative Life Support Systems».


2004 ◽  
Vol 48 (9) ◽  
pp. 3317-3322 ◽  
Author(s):  
Francesco Barchiesi ◽  
Elisabetta Spreghini ◽  
Monia Maracci ◽  
Annette W. Fothergill ◽  
Isabella Baldassarri ◽  
...  

ABSTRACT Candida glabrata has recently emerged as a significant pathogen involved in both superficial and deep-seated infections. In the present study, a checkerboard broth microdilution method was performed to investigate the in vitro activities of voriconazole (VOR) in combination with terbinafine (TRB), amphotericin B (AMB), and flucytosine (5FC) against 20 clinical isolates of C. glabrata. Synergy, defined as a fractional inhibitory concentration (FIC) index of ≤0.50, was observed in 75% of VOR-TRB, 10% of VOR-AMB, and 5% of VOR-5FC interactions. None of these combinations yielded antagonistic interactions (FIC index > 4). When synergy was not achieved, there was still a decrease in the MIC of one or both drugs used in the combination. In particular, the MICs were reduced to ≤1.0 μg/ml as a result of the combination for all isolates for which the AMB MIC at the baseline was ≥2.0 μg/ml. By a disk diffusion assay, the halo diameters produced by antifungal agents in combination were greater that those produced by each drug alone. Finally, killing curves showed that VOR-AMB exhibited synergistic interactions, while VOR-5FC sustained fungicidal activities against C. glabrata. These studies demonstrate that the in vitro activity of VOR against this important yeast pathogen can be enhanced upon combination with other drugs that have different modes of action or that target a different step in the ergosterol pathway. Further studies are warranted to elucidate the potential beneficial effects of such combination regimens in vivo.


Lab on a Chip ◽  
2021 ◽  
Author(s):  
Michel Moussus ◽  
Matthias Meier

High resolution live imaging promises new insights into the cellular and molecular dynamics of the plant root system in response to external cues. Microfluidic platforms are valuable analytical tools that...


2020 ◽  
Vol 21 (17) ◽  
pp. 6438
Author(s):  
Miriam Führer ◽  
Angelika Gaidora ◽  
Peter Venhuizen ◽  
Jedrzej Dobrogojski ◽  
Chloé Béziat ◽  
...  

Plants adjust their architecture to a constantly changing environment, requiring adaptation of differential growth. Despite their importance, molecular switches, which define growth transitions, are largely unknown. Apical hook development in dark grown Arabidopsis thaliana (A. thaliana) seedlings serves as a suitable model for differential growth transition in plants. Here, we show that the phytohormone auxin counteracts the light-induced growth transition during apical hook opening. We, subsequently, identified genes which are inversely regulated by light and auxin. We used in silico analysis of the regulatory elements in this set of genes and subsequently used natural variation in gene expression to uncover correlations between underlying transcription factors and the in silico predicted target genes. This approach uncovered that MADS box transcription factor AGAMOUS-LIKE 8 (AGL8)/FRUITFULL (FUL) modulates apical hook opening. Our data shows that transient FUL expression represses the expression of growth stimulating genes during early phases of apical hook development and therewith guards the transition to growth promotion for apical hook opening. Here, we propose a role for FUL in setting tissue identity, thereby regulating differential growth during apical hook development.


Sign in / Sign up

Export Citation Format

Share Document