scholarly journals Multi-omic and multi-species meta-analyses of nicotine consumption

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Rohan H. C. Palmer ◽  
Chelsie E. Benca-Bachman ◽  
Spencer B. Huggett ◽  
Jason A. Bubier ◽  
John E. McGeary ◽  
...  

AbstractCross-species translational approaches to human genomic analyses are lacking. The present study uses an integrative framework to investigate how genes associated with nicotine use in model organisms contribute to the genetic architecture of human tobacco consumption. First, we created a model organism geneset by collecting results from five animal models of nicotine exposure (RNA expression changes in brain) and then tested the relevance of these genes and flanking genetic variation using genetic data from human cigarettes per day (UK BioBank N = 123,844; all European Ancestry). We tested three hypotheses: (1) DNA variation in, or around, the ‘model organism geneset’ will contribute to the heritability to human tobacco consumption, (2) that the model organism genes will be enriched for genes associated with human tobacco consumption, and (3) that a polygenic score based off our model organism geneset will predict tobacco consumption in the AddHealth sample (N = 1667; all European Ancestry). Our results suggested that: (1) model organism genes accounted for ~5–36% of the observed SNP-heritability in human tobacco consumption (enrichment: 1.60–31.45), (2) model organism genes, but not negative control genes, were enriched for the gene-based associations (MAGMA, H-MAGMA, SMultiXcan) for human cigarettes per day, and (3) polygenic scores based on our model organism geneset predicted cigarettes per day in an independent sample. Altogether, these findings highlight the advantages of using multiple species evidence to isolate genetic factors to better understand the etiological complexity of tobacco and other nicotine consumption.

Author(s):  
Rohan H C Palmer ◽  
Chelsie E. Benca-Bachman ◽  
Jason A. Bubier ◽  
John E McGeary ◽  
Nikhil Ramgiri ◽  
...  

ABSTRACTComputational advances have fostered the development of new methods and tools to integrate gene expression and functional evidence into human-genetic association analyses. Integrative functional genomics analysis for altered response to alcohol in mice provided the first evidence that multi-species analysis tools, such as GeneWeaver, can identify or confirm novel alcohol-related loci. The present study describes an integrative framework to investigate how highly-connected genes linked by their association to tobacco-related behaviors, contribute to individual differences in tobacco consumption. Data from individuals of European ancestry in the UKBiobank (N=139,043) were used to examine the relative contribution of orthologs of a set of genes that are transcriptionally co-regulated by tobacco or nicotine exposure in model organism experiments to human tobacco consumption. Multi-component mixed linear models using genotyped and imputed single nucleotide variants indicated that: (1) variation within human orthologs of these genes accounted for 2-5% of the observed heritability (meta h2SNP-Total=0.08 [95% CI: 0.07, 0.09]) of tobacco/nicotine consumption across three independent folds of unrelated individuals (enrichment ranging from 0.85 - 2.98), and (2) variation around (5, 10, 15, 25, and 50 Kb regions) the set of co-transcriptionally regulated genes accounted for 5-36% of the observed SNP-heritability (enrichment ranging from 1.60 – 31.45). Notably, the effects of variants in co-transcriptionally regulated genes were enriched in tobacco GWAS. These findings highlight the advantages of using multiple species evidence to isolate genetic factors to better understand the etiological complexity of tobacco and other nicotine consumption.


2020 ◽  
Author(s):  
John E. McGeary ◽  
Chelsie Benca-Bachman ◽  
Victoria Risner ◽  
Christopher G Beevers ◽  
Brandon Gibb ◽  
...  

Twin studies indicate that 30-40% of the disease liability for depression can be attributed to genetic differences. Here, we assess the explanatory ability of polygenic scores (PGS) based on broad- (PGSBD) and clinical- (PGSMDD) depression summary statistics from the UK Biobank using independent cohorts of adults (N=210; 100% European Ancestry) and children (N=728; 70% European Ancestry) who have been extensively phenotyped for depression and related neurocognitive phenotypes. PGS associations with depression severity and diagnosis were generally modest, and larger in adults than children. Polygenic prediction of depression-related phenotypes was mixed and varied by PGS. Higher PGSBD, in adults, was associated with a higher likelihood of having suicidal ideation, increased brooding and anhedonia, and lower levels of cognitive reappraisal; PGSMDD was positively associated with brooding and negatively related to cognitive reappraisal. Overall, PGS based on both broad and clinical depression phenotypes have modest utility in adult and child samples of depression.


Animals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 2226
Author(s):  
Sazia Kunvar ◽  
Sylwia Czarnomska ◽  
Cino Pertoldi ◽  
Małgorzata Tokarska

The European bison is a non-model organism; thus, most of its genetic and genomic analyses have been performed using cattle-specific resources, such as BovineSNP50 BeadChip or Illumina Bovine 800 K HD Bead Chip. The problem with non-specific tools is the potential loss of evolutionary diversified information (ascertainment bias) and species-specific markers. Here, we have used a genotyping-by-sequencing (GBS) approach for genotyping 256 samples from the European bison population in Bialowieza Forest (Poland) and performed an analysis using two integrated pipelines of the STACKS software: one is de novo (without reference genome) and the other is a reference pipeline (with reference genome). Moreover, we used a reference pipeline with two different genomes, i.e., Bos taurus and European bison. Genotyping by sequencing (GBS) is a useful tool for SNP genotyping in non-model organisms due to its cost effectiveness. Our results support GBS with a reference pipeline without PCR duplicates as a powerful approach for studying the population structure and genotyping data of non-model organisms. We found more polymorphic markers in the reference pipeline in comparison to the de novo pipeline. The decreased number of SNPs from the de novo pipeline could be due to the extremely low level of heterozygosity in European bison. It has been confirmed that all the de novo/Bos taurus and Bos taurus reference pipeline obtained SNPs were unique and not included in 800 K BovineHD BeadChip.


2019 ◽  
Vol 48 (D1) ◽  
pp. D650-D658 ◽  
Author(s):  
◽  
Julie Agapite ◽  
Laurent-Philippe Albou ◽  
Suzi Aleksander ◽  
Joanna Argasinska ◽  
...  

Abstract The Alliance of Genome Resources (Alliance) is a consortium of the major model organism databases and the Gene Ontology that is guided by the vision of facilitating exploration of related genes in human and well-studied model organisms by providing a highly integrated and comprehensive platform that enables researchers to leverage the extensive body of genetic and genomic studies in these organisms. Initiated in 2016, the Alliance is building a central portal (www.alliancegenome.org) for access to data for the primary model organisms along with gene ontology data and human data. All data types represented in the Alliance portal (e.g. genomic data and phenotype descriptions) have common data models and workflows for curation. All data are open and freely available via a variety of mechanisms. Long-term plans for the Alliance project include a focus on coverage of additional model organisms including those without dedicated curation communities, and the inclusion of new data types with a particular focus on providing data and tools for the non-model-organism researcher that support enhanced discovery about human health and disease. Here we review current progress and present immediate plans for this new bioinformatics resource.


2012 ◽  
Vol 2012 ◽  
pp. 1-14 ◽  
Author(s):  
Lori A. McEachern

Non-model organisms are generally more difficult and/or time consuming to work with than model organisms. In addition, epigenetic analysis of model organisms is facilitated by well-established protocols, and commercially-available reagents and kits that may not be available for, or previously tested on, non-model organisms. Given the evolutionary conservation and widespread nature of many epigenetic mechanisms, a powerful method to analyze epigenetic phenomena from non-model organisms would be to use transgenic model organisms containing an epigenetic region of interest from the non-model. Interestingly, while transgenic Drosophila and mice have provided significant insight into the molecular mechanisms and evolutionary conservation of the epigenetic processes that target epigenetic control regions in other model organisms, this method has so far been under-exploited for non-model organism epigenetic analysis. This paper details several experiments that have examined the epigenetic processes of genomic imprinting and paramutation, by transferring an epigenetic control region from one model organism to another. These cross-species experiments demonstrate that valuable insight into both the molecular mechanisms and evolutionary conservation of epigenetic processes may be obtained via transgenic experiments, which can then be used to guide further investigations and experiments in the species of interest.


PLoS ONE ◽  
2021 ◽  
Vol 16 (11) ◽  
pp. e0259210
Author(s):  
Eric A. W. Slob ◽  
Cornelius A. Rietveld

Background Tobacco consumption is one of the leading causes of preventable death. In this study, we analyze whether someone’s genetic predisposition to smoking moderates the response to tobacco excise taxes. Methods We interact polygenic scores for smoking behavior with state-level tobacco excise taxes in longitudinal data (1992-2016) from the US Health and Retirement Study (N = 12,058). Results Someone’s genetic propensity to smoking moderates the effect of tobacco excise taxes on smoking behavior along the extensive margin (smoking vs. not smoking) and the intensive margin (the amount of tobacco consumed). In our analysis sample, we do not find a significant gene-environment interaction effect on smoking cessation. Conclusions When tobacco excise taxes are relatively high, those with a high genetic predisposition to smoking are less likely (i) to smoke, and (ii) to smoke heavily. While tobacco excise taxes have been effective in reducing smoking, the gene-environment interaction effects we observe in our sample suggest that policy makers could benefit from taking into account the moderating role of genes in the design of future tobacco control policies.


2020 ◽  
Vol 118 (1) ◽  
pp. e2017224118
Author(s):  
Adolfo G. Cuevas ◽  
Frank D. Mann ◽  
David R. Williams ◽  
Robert F. Krueger

An established body of research indicates that discrimination is associated with increased symptoms of anxiety and negative affect. However, the association cannot be interpreted unambiguously as an exposure effect because a common set of genetic factors can simultaneously contribute to increased liability for symptoms of anxiety, negative affect, and the perception of discrimination. The present study elucidates the association between discrimination and anxiety/negative affect by implementing strict genetic controls in a large sample of adults. We used data from the biomarker project of the Study of Midlife Development in the United States (MIDUS), a national probability sample of noninstitutionalized, English-speaking respondents aged 25 to 74 y. Participants who consented to provide genetic data were biologically unrelated and of European ancestry as determined by genotype principal components analysis (n = 1,146). A single structural regression model was fit to the data with three measures of discrimination specified to load onto a latent factor and six measures of anxiety and negative affect specified to load onto a second latent factor. After accounting for potential genetic confounds—polygenic scores for anxiety, depression, and neuroticism and the first five genetic principal components—greater discrimination was associated with greater anxiety/negative affect (β = 0.53, SE = 0.04, P < 0.001). Findings suggest that measures of perceived discrimination should be considered environmental risk factors for anxiety/negative affect rather than indices of genetic liability for anxiety, depression, or neuroticism. Clinical interventions and prevention measures should focus on ways to mitigate the impact of discrimination to improve mental health at the population level.


2021 ◽  
Author(s):  
Yoonjung Yoonie Joo ◽  
Jiook Cha ◽  
Jeremy Freese ◽  
M Geoffrey Hayes

Abstract The genetic underpinnings of cognitive resilience in aging remains unknown. Predicting an individual’s rate of cognitive decline—or cognitive resilience—using genetics will allow personalized intervention for cognitive enhancement and optimal selection of target samples in clinical trials. Here, using genome-wide polygenic scores(GPS) as the genomic indicators for variations of human intelligence, we examined the genetic liability of cognitive abilities in the behavioral/cognitive phenome to understand individual differences in cognitive capacity over time. Using the longitudinal sociogenomic data of 8,509 European-ancestry adults between the ages of mid-60s to 70s, we found that a higher cognitive GPS significantly correlated with a slower cognitive decline specifically in memory recall, but not in other cognitive domains. Linear mixed models with cognitive GPSs explained proportions of the variances in cognitive tests up to 60.4%. This study presents the novel genetic protective effects of cognitive ability on the decline of memory recall in aging population.


2021 ◽  
Author(s):  
Claire Witham ◽  
Sara Wells

AbstractBiobanks containing tissue and other biological samples from many model organisms provide easy and faster access to ex vivo resources for a wide-range of research programmes. For all laboratory animals, collecting and preserving tissue at post-mortem is an effective way of maximising the benefits of individual animals and potentially reducing the numbers required for experimentation in the future. For primate tissues, biobanks represent the scarcest of these resources but quite possibly those most valuable for preclinical and translation studies.


2018 ◽  
Author(s):  
Susanne Tilk ◽  
Alan Bergland ◽  
Aaron Goodman ◽  
Paul Schmidt ◽  
Dmitri Petrov ◽  
...  

AbstractEvolve-and-resequence (E+R) experiments leverage next-generation sequencing technology to track the allele frequency dynamics of populations as they evolve. While previous work has shown that adaptive alleles can be detected by comparing frequency trajectories from many replicate populations, this power comes at the expense of high-coverage (>100x) sequencing of many pooled samples, which can be cost-prohibitive. Here, we show that accurate estimates of allele frequencies can be achieved with very shallow sequencing depths (<5x) via inference of known founder haplotypes in small genomic windows. This technique can be used to efficiently estimate frequencies for any number of bi-allelic SNPs in populations of any model organism founded with sequenced homozygous strains. Using both experimentally-pooled and simulated samples of Drosophila melanogaster, we show that haplotype inference can improve allele frequency accuracy by orders of magnitude for up to 50 generations of recombination, and is robust to moderate levels of missing data, as well as different selection regimes. Finally, we show that a simple linear model generated from these simulations can predict the accuracy of haplotype-derived allele frequencies in other model organisms and experimental designs. To make these results broadly accessible for use in E+R experiments, we introduce HAF-pipe, an open-source software tool for calculating haplotype-derived allele frequencies from raw sequencing data. Ultimately, by reducing sequencing costs without sacrificing accuracy, our method facilitates E+R designs with higher replication and resolution, and thereby, increased power to detect adaptive alleles.


Sign in / Sign up

Export Citation Format

Share Document