scholarly journals Beraprost ameliorates postmenopausal osteoporosis by regulating Nedd4-induced Runx2 ubiquitination

2021 ◽  
Vol 12 (5) ◽  
Author(s):  
Huo-Liang Zheng ◽  
Wen-Ning Xu ◽  
Wen-Sheng Zhou ◽  
Run-Ze Yang ◽  
Peng-Bo Chen ◽  
...  

AbstractBone health requires adequate bone mass, which is maintained by a critical balance between bone resorption and formation. In our study, we identified beraprost as a pivotal regulator of bone formation and resorption. The administration of beraprost promoted differentiation of mouse bone mesenchymal stem cells (M-BMSCs) through the PI3K–AKT pathway. In co-culture, osteoblasts stimulated with beraprost inhibited osteoclastogenesis in a rankl-dependent manner. Bone mass of p53 knockout mice remained stable, regardless of the administration of beraprost, indicating that p53 plays a vital role in the bone mass regulation by beraprost. Mechanistic in vitro studies showed that p53 binds to the promoter region of neuronal precursor cell-expressed developmentally downregulated 4 (Nedd4) to promote its transcription. As a ubiquitinating enzyme, Nedd4 binds to runt-related transcription factor 2 (Runx2), which results in its ubiquitination and subsequent degradation. These data indicate that the p53–Nedd4–Runx2 axis is an effective regulator of bone formation and highlight the potential of beraprost as a therapeutic drug for postmenopausal osteoporosis.

2020 ◽  
Author(s):  
Wei Hong ◽  
Zhanying Wei ◽  
Zhaohui Qiu ◽  
Zheng Li ◽  
Chensheng Fu ◽  
...  

Abstract Background: Statins are the most widely used drugs in elderly patients, the most common clinical application of statins is in aged hyperlipemia patients. There are few studies on the effects and mechanisms of statins on bone in elderly mice with hyperlipemia. The study is to examine the effects of atorvastatin on bone phenotypes and metabolism in aged apolipoprotein E-deficient (apoE–/–) mice, and the possible mechanisms involved in these changes. Methods: Twenty-four 60-week-old apoE–/– mice were randomly allocated to two groups. Twelve mice were orally gavaged with atorvastatin (10 mg/kg body weight/day) for 12 weeks; the others served as the control group. Bone mass and skeletal microarchitecture were determined using micro-CT. Bone metabolism was assessed by serum analyses, qRT-PCR, and Western blot. Bone marrow-derived mesenchymal stem cells (BMSCs) from apoE–/– mice were differentiated into osteoblasts and treated with atorvastatin and Sirt1 inhibitor EX-527. Results: The results showed that long-term administration of atorvastatin increases bone mass and improves bone microarchitecture in trabecular bone but not in cortical bone. Furthermore, the serum bone formation marker osteocalcin (OCN) was ameliorated by atorvastatin, whereas the bone resorption marker tartrate-resistant acid phosphatase 5b (Trap5b) did not appear obviously changes after the treatment of atorvastatin. The mRNA expression of Sirt1, runt-related transcription factor 2 (Runx2), alkaline phosphatase (ALP) and OCN in bone tissue were increased after atorvastatin administration. Western blot showed same trend in Sirt1 and Runx2. The in vitro study showed that when BMSCs from apoE–/– mice were pretreated with EX527, the higher expression of Runx2, ALP and OCN activated by atorvastatin decreased significantly or showed no difference compared with the control. The protein expression of Runx2 showed same trend. Conclusions: Accordingly, the current study validates the hypothesis that atorvastatin can increase bone mass and promote osteogenesis in aged apoE−/− mice by regulating the Sirt1–Runx2 axis.


2020 ◽  
Author(s):  
Wei Hong ◽  
Zhanying Wei ◽  
Zhaohui Qiu ◽  
Zheng Li ◽  
Chensheng Fu ◽  
...  

Abstract Background Statins are the most widely used drugs in elderly patients, the most common clinical application of statins is in aged hyperlipemia patients. There are few studies on the effects and mechanisms of statins on bone in elderly mice with hyperlipemia. The study is to examine the effects of atorvastatin on bone phenotypes and metabolism in aged apolipoprotein E-deficient (apoE–/–) mice, and the possible mechanisms involved in these changes. Methods Twenty-four 60-week-old apoE–/– mice were randomly allocated to two groups. Twelve mice were orally gavaged with atorvastatin (10 mg/kg body weight/day) for 12 weeks; the others served as the control group. Bone mass and skeletal microarchitecture were determined using micro-CT. Bone metabolism was assessed by serum analyses, qRT-PCR, and Western blot. Bone marrow-derived mesenchymal stem cells (BMSCs) from apoE–/– mice were differentiated into osteoblasts and treated with atorvastatin and Sirt1 inhibitor EX-527. Results The results showed that long-term administration of atorvastatin increases bone mass and improves bone microarchitecture in trabecular bone but not in cortical bone. Furthermore, the serum bone formation marker osteocalcin (OCN) was ameliorated by atorvastatin, whereas the bone resorption marker tartrate-resistant acid phosphatase 5b (Trap5b) did not appear to be impacted by atorvastatin treatment. The mRNA expression of Sirt1, runt-related transcription factor 2 (Runx2), alkaline phosphatase (ALP) and OCN in bone tissue were increased after atorvastatin administration. Western blot showed same trend in Sirt1 and Runx2. The in vitro study showed that when BMSCs from apoE–/– mice were pretreated with EX527, the higher expression of Runx2, ALP and OCN activated by atorvastatin decreased significantly or showed no difference compared with the control. The protein expression of Runx2 showed same trend. Conclusions Accordingly, the current study validates the hypothesis that atorvastatin can increase bone mass and promote osteogenesis in aged apoE−/− mice by regulating the Sirt1–Runx2 axis.


2004 ◽  
Vol 164 (4) ◽  
pp. 509-514 ◽  
Author(s):  
Romain Dacquin ◽  
Rachel A. Davey ◽  
Catherine Laplace ◽  
Régis Levasseur ◽  
Howard A. Morris ◽  
...  

Amylin is a member of the calcitonin family of hormones cosecreted with insulin by pancreatic β cells. Cell culture assays suggest that amylin could affect bone formation and bone resorption, this latter function after its binding to the calcitonin receptor (CALCR). Here we show that Amylin inactivation leads to a low bone mass due to an increase in bone resorption, whereas bone formation is unaffected. In vitro, amylin inhibits fusion of mononucleated osteoclast precursors into multinucleated osteoclasts in an ERK1/2-dependent manner. Although Amylin +/− mice like Amylin-deficient mice display a low bone mass phenotype and increased bone resorption, Calcr +/− mice display a high bone mass due to an increase in bone formation. Moreover, compound heterozygote mice for Calcr and Amylin inactivation displayed bone abnormalities observed in both Calcr +/− and Amylin +/− mice, thereby ruling out that amylin uses CALCR to inhibit osteoclastogenesis in vivo. Thus, amylin is a physiological regulator of bone resorption that acts through an unidentified receptor.


2020 ◽  
Author(s):  
Wei Hong ◽  
Zhanying Wei ◽  
Zhaohui Qiu ◽  
Zheng Li ◽  
Chensheng Fu ◽  
...  

Abstract Background Statins are the most widely used drugs in elderly patients, the most common clinical application of statins is in aged hyperlipemia patients. There are few studies on the effects and mechanisms of statins on bone in elderly mice with hyperlipemia. The study is to examine the effects of atorvastatin on bone phenotypes and metabolism in aged apolipoprotein E-deficient (apoE –/– ) mice, and the possible mechanisms involved in these changes. Methods Twenty-four 60-week-old apoE –/– mice were randomly allocated to two groups. Twelve mice were orally gavaged with atorvastatin (10 mg/kg body weight/day) for 12 weeks; the others served as the control group. Bone mass and skeletal microarchitecture were determined using micro-CT. Bone metabolism was assessed by serum analyses, qRT-PCR, and Western blot. Bone marrow-derived mesenchymal stem cells (BMSCs) from apoE –/– mice were differentiated into osteoblasts and treated with atorvastatin and Sirt1 inhibitor EX-527. Results The results showed that long-term administration of atorvastatin increases bone mass and improves bone microarchitecture in trabecular bone but not in cortical bone. Furthermore, the serum bone formation marker osteocalcin (OCN) was ameliorated by atorvastatin, whereas the bone resorption marker tartrate-resistant acid phosphatase 5b (Trap5b) did not appear to be impacted by atorvastatin treatment. The mRNA expression of Sirt1, runt-related transcription factor 2 (Runx2), alkaline phosphatase (ALP) and OCN in bone tissue were increased after atorvastatin administration. Western blot showed same trend in Sirt1 and Runx2. The in vitro study showed that when BMSCs from apoE –/– mice were pretreated with EX527, the higher expression of Runx2, ALP and OCN activated by atorvastatin decreased significantly or showed no difference compared with the control. The protein expression of Runx2 showed same trend. Conclusions Accordingly, the current study validates the hypothesis that atorvastatin can increase bone mass and promote osteogenesis in aged apoE −/− mice by regulating the Sirt1–Runx2 axis.


2009 ◽  
Vol 24 (4) ◽  
pp. 578-588 ◽  
Author(s):  
Xiaodong Li ◽  
Michael S Ominsky ◽  
Kelly S Warmington ◽  
Sean Morony ◽  
Jianhua Gong ◽  
...  

2021 ◽  
Vol 22 (9) ◽  
pp. 4717
Author(s):  
Jin-Young Lee ◽  
Da-Ae Kim ◽  
Eun-Young Kim ◽  
Eun-Ju Chang ◽  
So-Jeong Park ◽  
...  

Lumican, a ubiquitously expressed small leucine-rich proteoglycan, has been utilized in diverse biological functions. Recent experiments demonstrated that lumican stimulates preosteoblast viability and differentiation, leading to bone formation. To further understand the role of lumican in bone metabolism, we investigated its effects on osteoclast biology. Lumican inhibited both osteoclast differentiation and in vitro bone resorption in a dose-dependent manner. Consistent with this, lumican markedly decreased the expression of osteoclastogenesis markers. Moreover, the migration and fusion of preosteoclasts and the resorptive activity per osteoclast were significantly reduced in the presence of lumican, indicating that this protein affects most stages of osteoclastogenesis. Among RANKL-dependent pathways, lumican inhibited Akt but not MAP kinases such as JNK, p38, and ERK. Importantly, co-treatment with an Akt activator almost completely reversed the effect of lumican on osteoclast differentiation. Taken together, our findings revealed that lumican inhibits osteoclastogenesis by suppressing Akt activity. Thus, lumican plays an osteoprotective role by simultaneously increasing bone formation and decreasing bone resorption, suggesting that it represents a dual-action therapeutic target for osteoporosis.


Endocrinology ◽  
2003 ◽  
Vol 144 (5) ◽  
pp. 2132-2140 ◽  
Author(s):  
Keiichiro Kitahara ◽  
Muneaki Ishijima ◽  
Susan R. Rittling ◽  
Kunikazu Tsuji ◽  
Hisashi Kurosawa ◽  
...  

Intermittent PTH treatment increases cancellous bone mass in osteoporosis patients; however, it reveals diverse effects on cortical bone mass. Underlying molecular mechanisms for anabolic PTH actions are largely unknown. Because PTH regulates expression of osteopontin (OPN) in osteoblasts, OPN could be one of the targets of PTH in bone. Therefore, we examined the role of OPN in the PTH actions in bone. Intermittent PTH treatment neither altered whole long-bone bone mineral density nor changed cortical bone mass in wild-type 129 mice, although it enhanced cancellous bone volume as reported previously. In contrast, OPN deficiency induced PTH enhancement of whole-bone bone mineral density as well as cortical bone mass. Strikingly, although PTH suppressed periosteal bone formation rate (BFR) and mineral apposition rate (MAR) in cortical bone in wild type, OPN deficiency induced PTH activation of periosteal BFR and MAR. In cancellous bone, OPN deficiency further enhanced PTH increase in BFR and MAR. Analysis on the cellular bases for these phenomena indicated that OPN deficiency augmented PTH enhancement in the increase in mineralized nodule formation in vitro. OPN deficiency did not alter the levels of PTH enhancement of the excretion of deoxypyridinoline in urine, the osteoclast number in vivo, and tartrate-resistant acid phosphatase-positive cell development in vitro. These observations indicated that OPN deficiency specifically induces PTH activation of periosteal bone formation in the cortical bone envelope.


2004 ◽  
Vol 33 (1) ◽  
pp. 11-19 ◽  
Author(s):  
RY Li ◽  
HD Song ◽  
WJ Shi ◽  
SM Hu ◽  
YS Yang ◽  
...  

In addition to serving as a fat depot, adipose tissue is also considered as an important endocrine organ that synthesizes and secretes a number of factors. Leptin is an adipocyte-derived hormone that plays a vital role in energy balance. Expression of leptin is regulated by dietary status and hormones. In the present study, we report that galanin, an orexigenic peptide, inhibits leptin expression and secretion in rat adipose tissue and in 3T3-L1 adipocytes. Treatment with galanin (25 micro g/animal) induced approximately 46% down-regulation of leptin secretion at 15 min, followed by 40, 37 and 47% decreases in leptin secretion at 1, 2 and 4 h respectively. Although Northern blot analysis of adipose tissue from the same animals showed that leptin mRNA expression in adipose tissue was unaffected by galanin treatment for 2 h, galanin treatment for 4 h led to decline of leptin mRNA expression in a dose-dependent manner. Meanwhile, treating the rats with galanin had no effect on leptin mRNA expression in the hypothalamus. The inhibitory action of the galanin on leptin mRNA and protein levels was also observed in vitro. When incubated with 10 nM galanin for 48 h, leptin mRNA expression and protein secretion also decreased in 3T3-L1 adipocytes. On the other hand, galanin was found not only to express in rat adipose tissue, but also to increase about 8-fold after fasting. Based on these data, we speculate that increased galanin expression in rat adipose tissue after fasting may be involved in reducing leptin expression and secretion in fasting rats.


2021 ◽  
Vol 12 ◽  
Author(s):  
Luping Zhang ◽  
Dengyuan Zhou ◽  
Qiuyan Li ◽  
Shuo Zhu ◽  
Muhammad Imran ◽  
...  

Flaviviruses are the major emerging arthropod-borne pathogens globally. However, there is still no practical anti-flavivirus approach. Therefore, existing and emerging flaviviruses desperately need active broad-spectrum drugs. In the present study, the antiviral effect of steroidal dehydroepiandrosterone (DHEA) and 23 synthetic derivatives against flaviviruses such as Japanese encephalitis virus (JEV), Zika virus (ZIKV), and Dengue virus (DENV) were appraised by examining the characteristics of virus infection both in vitro and in vivo. Our results revealed that AV1003, AV1004 and AV1017 were the most potent inhibitors of flavivirus propagation in cells. They mainly suppress the viral infection in the post-invasion stage in a dose-dependent manner. Furthermore, orally administered compound AV1004 protected mice from lethal JEV infection by increasing the survival rate and reducing the viral load in the brain of infected mice. These results indicate that the compound AV1004 might be a potential therapeutic drug against JEV infection. These DHEA derivatives may provide lead scaffolds for further design and synthesis of potential anti-flavivirus potential drugs.


2021 ◽  
Vol 12 ◽  
Author(s):  
Wang Gong ◽  
Xingren Chen ◽  
Tianshu Shi ◽  
Xiaoyan Shao ◽  
Xueying An ◽  
...  

As the society is aging, the increasing prevalence of osteoporosis has generated huge social and economic impact, while the drug therapy for osteoporosis is limited due to multiple targets involved in this disease. Zhuangguguanjie formulation (ZG) is extensively used in the clinical treatment of bone and joint diseases, but the underlying mechanism has not been fully described. This study aimed to examine the therapeutic effect and potential mechanism of ZG on postmenopausal osteoporosis. The ovariectomized (OVX) mice were treated with normal saline or ZG for 4 weeks after ovariectomy following a series of analyses. The bone mass density (BMD) and trabecular parameters were examined by micro-CT. Bone remodeling was evaluated by the bone histomorphometry analysis and ELISA assay of bone turnover biomarkers in serum. The possible drug–disease common targets were analyzed by network pharmacology. To predict the potential biological processes and related pathways, GO/KEGG enrichment analysis was performed. The effects of ZG on the differentiation phenotype of osteoclasts and osteoblasts and the predicted pathway were verified in vitro. The results showed that ZG significantly improved the bone mass and micro-trabecular architecture in OVX mice compared with untreated OVX mice. ZG could promote bone formation and inhibit bone resorption to ameliorate ovariectomy-induced osteoporosis as evidenced by increased number of osteoblast (N.Ob/Tb.Pm) and decreased number of osteoclast (N.Oc/Tb.Pm) in treated group compared with untreated OVX mice. After identifying potential drug–disease common targets by network pharmacology, GO enrichment analysis predicted that ZG might affect various biological processes including osteoblastic differentiation and osteoclast differentiation. The KEGG enrichment analysis suggested that PI3K/Akt and mTOR signaling pathways could be the possible pathways. Furthermore, the experiments in vitro validated our findings. ZG significantly down-regulated the expression of osteoclast differentiation markers, reduced osteoclastic resorption, and inhibited the phosphorylation of PI3K/Akt, while ZG obviously up-regulated the expression of osteogenic biomarkers, promoted the formation of calcium nodules, and hampered the phosphorylation of 70S6K1/mTOR, which can be reversed by the corresponding pathway activator. Thus, our study suggested that ZG could inhibit the PI3K/Akt signaling pathway to reduce osteoclastic bone resorption as well as hamper the mTORC1/S6K1 signaling pathway to promote osteoblastic bone formation.


Sign in / Sign up

Export Citation Format

Share Document