scholarly journals LncRNA coordinates Hippo and mTORC1 pathway activation in cancer

2021 ◽  
Vol 12 (9) ◽  
Author(s):  
Shugeng Zhang ◽  
Shuhang Liang ◽  
Dehai Wu ◽  
Hongrui Guo ◽  
Kun Ma ◽  
...  

AbstractThe Hippo and mammalian target of rapamycin complex 1 (mTORC1) pathways are the two predominant pathways that regulate tumour growth and metastasis. Therefore, we explored the potential crosstalk between these two functionally relevant pathways to coordinate their tumour growth-control functions. We found that a Hippo pathway-related long noncoding RNA, HPR, directly interacts with Raptor, an essential component of mTORC1, to upregulate mTORC1 activation by impairing the phosphorylation of Raptor by AMPK. Knockdown or knockout of HPR in breast cancer and cholangiocarcinoma cells led to a reduction in tumour growth. Compared with HPR WT cells, HPR-overexpressing cells exhibited nuclear accumulation of YAP1, and significantly blocked the downregulation of mTORC1 signalling induced by energy stress. Thus, our study reveals a direct link between the Hippo and mTORC1 pathways in the control of tumour growth.

Author(s):  
Nina Zeng ◽  
Randall F. D'Souza ◽  
Caitlin L. Macrae ◽  
Vandre C. Figueiredo ◽  
Chantal A. Pileggi ◽  
...  

Disuse-induced muscle atrophy is accompanied by a blunted postprandial response of the mammalian target of rapamycin complex 1 (mTORC1) pathway. Conflicting observations exist as to whether postabsorptive mTORC1 pathway activation is also blunted by disuse and plays a role in atrophy. It is unknown whether changes in habitual protein intake alters mTORC1 regulatory proteins and how they may contribute to the development of anabolic resistance. The primary objective of this study was to characterize the downstream responsiveness of skeletal muscle mTORC1 activation and its upstream regulatory factors, following 14 days of lower limb disuse in middle-aged men (45-60 years). The participants were further randomized to receive daily supplementation of 20g/d of protein (n=12; milk protein concentrate) or isocaloric carbohydrate placebo (n=13). Immobilization reduced postabsorptive skeletal muscle phosphorylation of the mTORC1 downstream targets, 4E-BP1, P70S6K and ribosomal protein S6 (RPS6), with phosphorylation of the latter two decreasing to a greater extent in the placebo, compared to the protein supplementation groups (37 ± 13 vs 14 ± 11% and 38 ± 20 vs 25 ± 8% respectively). Sestrin2 protein was also downregulated following immobilization irrespective of supplement group, despite a corresponding increase in its mRNA content. This decrease in Sestrin2 protein was negatively correlated with the immobilization induced change in the in-silico predicted regulator miR-23b-3p. No other measured upstream proteins were altered by immobilization or supplementation. Immobilization downregulated postabsorptive mTORC1 pathway activation and 20g/day of protein supplementation attenuated the decrease in phosphorylation of targets regulating muscle protein synthesis.


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Bo Huang ◽  
Weiyang Cai ◽  
Qian Wang ◽  
Feng Liu ◽  
Ming Xu ◽  
...  

Gastric cancer, as a malignant epithelial tumor, is a major health threat leading to poor overall survival and death. It is usually diagnosed at an advanced stage due to asymptomatic or only nonspecific early symptoms. The present study demonstrated that gankyrin contributes to the early malignant transformation of gastric cancer and can be selected to predict the risk of gastric cancer in those patients harboring the precancerous lesions (dysplasia and intestinal metaplasia). In addition, a new insight into gastric cancer was provided, which stated that gankyrin alleviates oxidative stress via mTORC1 pathway activation. It can potentiate the mTORC1 by PGK1-AKT signaling that promotes the tumor process, and this phenomenon is not completely consistent with the previous report describing colorectal cancer.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Sofía Cabezudo ◽  
Maria Sanz-Flores ◽  
Alvaro Caballero ◽  
Inmaculada Tasset ◽  
Elena Rebollo ◽  
...  

AbstractThe mTORC1 node plays a major role in autophagy modulation. We report a role of the ubiquitous Gαq subunit, a known transducer of plasma membrane G protein-coupled receptors signaling, as a core modulator of mTORC1 and autophagy. Cells lacking Gαq/11 display higher basal autophagy, enhanced autophagy induction upon different types of nutrient stress along with a decreased mTORC1 activation status. They are also unable to reactivate mTORC1 and thus inactivate ongoing autophagy upon nutrient recovery. Conversely, stimulation of Gαq/11 promotes sustained mTORC1 pathway activation and reversion of autophagy promoted by serum or amino acids removal. Gαq is present in autophagic compartments and lysosomes and is part of the mTORC1 multi-molecular complex, contributing to its assembly and activation via its nutrient status-sensitive interaction with p62, which displays features of a Gαq effector. Gαq emerges as a central regulator of the autophagy machinery required to maintain cellular homeostasis upon nutrient fluctuations.


2016 ◽  
Vol 27 (10) ◽  
pp. 1581-1595 ◽  
Author(s):  
Alaide Domínguez-Calderón ◽  
Antonia Ávila-Flores ◽  
Arturo Ponce ◽  
Esther López-Bayghen ◽  
José-Víctor Calderón-Salinas ◽  
...  

Renal compensatory hypertrophy (RCH) restores normal kidney function after disease or loss of kidney tissue and is characterized by an increase in organ size due to cell enlargement and not to cell proliferation. In MDCK renal epithelial cells, silencing of the tight junction protein zona occludens 2 (ZO-2 KD) induces cell hypertrophy by two mechanisms: prolonging the time that cells spend at the G1 phase of the cell cycle due to an increase in cyclin D1 level, and augmenting the rate of protein synthesis. The latter is triggered by the nuclear accumulation and increased transcriptional activity of Yes-associated protein (YAP), the main target of the Hippo pathway, which results in decreased expression of phosphatase and tensin homologue. This in turn increased the level of phosphatidylinositol (3,4,5)-triphosphate, which transactivates the Akt/mammalian target of rapamycin pathway, leading to activation of the kinase S6K1 and increased synthesis of proteins and cell size. In agreement, in a rat model of uninephrectomy, RCH is accompanied by decreased expression of ZO-2 and nuclear expression of YAP. Our results reveal a novel role of ZO-2 as a modulator of cell size.


Author(s):  
Piera Tocci ◽  
Giovanni Blandino ◽  
Anna Bagnato

AbstractThe rational making the G protein-coupled receptors (GPCR) the centerpiece of targeted therapies is fueled by the awareness that GPCR-initiated signaling acts as pivotal driver of the early stages of progression in a broad landscape of human malignancies. The endothelin-1 (ET-1) receptors (ET-1R), known as ETA receptor (ETAR) and ETB receptor (ETBR) that belong to the GPCR superfamily, affect both cancer initiation and progression in a variety of cancer types. By the cross-talking with multiple signaling pathways mainly through the scaffold protein β-arrestin1 (β-arr1), ET-1R axis cooperates with an array of molecular determinants, including transcription factors and co-factors, strongly affecting tumor cell fate and behavior. In this scenario, recent findings shed light on the interplay between ET-1 and the Hippo pathway. In ETAR highly expressing tumors ET-1 axis induces the de-phosphorylation and nuclear accumulation of the Hippo pathway downstream effectors, the paralogous transcriptional cofactors Yes-associated protein (YAP) and Transcriptional coactivator with PDZ-binding motif (TAZ). Recent evidence have discovered that ET-1R/β-arr1 axis instigates a transcriptional interplay involving YAP and mutant p53 proteins, which share a common gene signature and cooperate in a oncogenic signaling network. Mechanistically, YAP and mutp53 are enrolled in nuclear complexes that turn on a highly selective YAP/mutp53-dependent transcriptional response. Notably, ET-1R blockade by the FDA approved dual ET-1 receptor antagonist macitentan interferes with ET-1R/YAP/mutp53 signaling interplay, through the simultaneous suppression of YAP and mutp53 functions, hampering metastasis and therapy resistance. Based on these evidences, we aim to review the recent findings linking the GPCR signaling, as for ET-1R, to YAP/TAZ signaling, underlining the clinical relevance of the blockade of such signaling network in the tumor and microenvironmental contexts. In particular, we debate the clinical implications regarding the use of dual ET-1R antagonists to blunt gain of function activity of mutant p53 proteins and thereby considering them as a potential therapeutic option for mutant p53 cancers. The identification of ET-1R/β-arr1-intertwined and bi-directional signaling pathways as targetable vulnerabilities, may open new therapeutic approaches able to disable the ET-1R-orchestrated YAP/mutp53 signaling network in both tumor and stromal cells and concurrently sensitizes to high-efficacy combined therapeutics.


2015 ◽  
Vol 309 (10) ◽  
pp. C639-C649 ◽  
Author(s):  
Hui-Hua Chang ◽  
Steven H. Young ◽  
James Sinnett-Smith ◽  
Caroline Ei Ne Chou ◽  
Aune Moro ◽  
...  

Obesity, a known risk factor for pancreatic cancer, is associated with inflammation and insulin resistance. Proinflammatory prostaglandin E2 (PGE2) and elevated insulin-like growth factor type 1 (IGF-1), related to insulin resistance, are shown to play critical roles in pancreatic cancer progression. We aimed to explore a potential cross talk between PGE2 signaling and the IGF-1/Akt/mammalian target of rapamycin complex 1 (mTORC1) pathway in pancreatic cancer, which may be a key to unraveling the obesity-cancer link. In PANC-1 human pancreatic cancer cells, we showed that PGE2 stimulated mTORC1 activity independently of Akt, as evaluated by downstream signaling events. Subsequently, using pharmacological and genetic approaches, we demonstrated that PGE2-induced mTORC1 activation is mediated by the EP4/cAMP/PKA pathway, as well as an EP1/Ca2+-dependent pathway. The cooperative roles of the two pathways were supported by the maximal inhibition achieved with the combined pharmacological blockade, and the coexistence of highly expressed EP1 (mediating the Ca2+ response) and EP2 or EP4 (mediating the cAMP/PKA pathway) in PANC-1 cells and in the prostate cancer line PC-3, which also robustly exhibited PGE2-induced mTORC1 activation, as identified from a screen in various cancer cell lines. Importantly, we showed a reinforcing interaction between PGE2 and IGF-1 on mTORC1 signaling, with an increase in IL-23 production as a cellular outcome. Our data reveal a previously unrecognized mechanism of PGE2-stimulated mTORC1 activation mediated by EP4/cAMP/PKA and EP1/Ca2+ signaling, which may be of great importance in elucidating the promoting effects of obesity in pancreatic cancer. Ultimately, a precise understanding of these molecular links may provide novel targets for efficacious interventions devoid of adverse effects.


2016 ◽  
Vol 216 (1) ◽  
pp. 265-277 ◽  
Author(s):  
Hitoshi Matakatsu ◽  
Seth S. Blair ◽  
Richard G. Fehon

The large protocadherin Fat functions to promote Hippo pathway activity in restricting tissue growth. Loss of Fat leads to accumulation of the atypical myosin Dachs at the apical junctional region, which in turn promotes growth by inhibiting Warts. We previously identified Approximated (App), a DHHC domain palmitoyltransferase, as a negative regulator of Fat signaling in growth control. We show here that App promotes growth by palmitoylating the intracellular domain of Fat, and that palmitoylation negatively regulates Fat function. Independently, App also recruits Dachs to the apical junctional region through protein–protein association, thereby stimulating Dachs’s activity in promoting growth. Further, we show that palmitoylation by App functions antagonistically to phosphorylation by Discs-overgrown, which activates Fat. Together, these findings suggest a model in which App promotes Dachs activity by simultaneously repressing Fat via posttranslational modification and recruiting Dachs to the apical junctional region, thereby promoting tissue growth.


2013 ◽  
Vol 113 (suppl_1) ◽  
Author(s):  
Jifen Li ◽  
Sarah Carrante ◽  
Roslyn Yi ◽  
Frans van Roy ◽  
Glenn L. Radice

Introduction: Mammalian heart possesses regenerative potential immediately after birth and lost by one week of age. The mechanisms that govern neonatal cardiomyocyte proliferation and regenerative capacity are poorly understood. Recent reports indicate that Yap-Tead transcriptional complex is necessary and sufficient for cardiomyocyte proliferation. During postnatal development, N-cadherin/catenin adhesion complex becomes concentrated at termini of cardiomyocytes facilitating maturation of a specialized intercellular junction structure, the intercalated disc (ICD). This process coincides with the time cardiomyocytes exit cell cycle soon after birth. Hypothesis: We hypothesize that coincident with maturation of ICD α-catenins sequester transcriptional coactivator Yap in cytosol thus preventing activation of genes critical for cardiomyocyte proliferation. Methods: We deleted αE-catenin / αT-catenin genes (α-cat DKO) in perinatal mouse heart and knockdown (KD) α-catenins in neonatal rat cardiomyocytes to study functional impact of α-catenins ablation on ICD maturation. Results: We previously demonstrated that adult α-cat DKO mice exhibited decrease in scar size and improved function post myocardial infarction. In present study, we investigated function of α-catenins during postnatal heart development. We found increase in the number of Yap-positive nuclei (58.7% in DKO vs. 35.8 % in WT, n=13, p<0.001) and PCNA (53.9% in DKO vs. 47.8%, n=8, p<0.05) at postnatal day 1 and day 7 of α-cat DKO heart, respectively. Loss of α-catenins resulted in reduction in N-cadherin at ICD at day 14. We observed an increase number of mononucleated myocytes and decrease number of binucleated myocytes in α-cat DKO compared to controls. Using siRNA KD, we were able to replicate α-cat DKO proliferative phenotype in vitro. The number of BrdU-positive cells was decreased in α-cat KD after interfering with Yap expression (2.91% in α-cat KD vs. 2.02% in α-cat/Yap KD, n>2500 cells, p<0.05), suggesting α-catenins regulate cell proliferation through Yap in neonatal cardiomyocytes. Conclusion: Our results suggest that maturation of ICD regulates α-catenin-Yap interactions in cytosol, thus preventing Yap nuclear accumulation and cardiomyocyte proliferation.


2021 ◽  
Author(s):  
Hiroshi Shiraishi ◽  
Nobuyuki Shimizu ◽  
Mika Tsumori ◽  
Kyoko Kiyota ◽  
Miwako Maeda ◽  
...  

Abstract Leucyl-tRNA synthetase (LARS) is an enzyme that catalyses the ligation of leucine with leucine tRNA. LARS is also essential to sensitize the intracellular leucine concentration to the mammalian target of rapamycin complex 1 (mTORC1) activation. Biallelic mutation in the LARS gene causes infantile liver failure syndrome type 1 (ILFS1), which is characterized by acute liver failure, anaemia, and neurological disorders, including microcephaly and seizures. However, the molecular mechanism underlying ILFS1 under LARS deficiency has been elusive. Here, we generated Lars deficient (larsb-/-) zebrafish that showed progressive liver failure and anaemia, resulting in early lethality within 12 days post fertilization. The atg5-morpholino knockdown and bafilomycin treatment partially improved the size of the liver and survival rate in larsb-/- zebrafish. These findings indicate the involvement of autophagy in the pathogenesis of larsb-/- zebrafish. Indeed, excessive autophagy activation was observed in larsb-/- zebrafish. Therefore, our data clarify a mechanistic link between LARS and autophagy in vivo. Furthermore, autophagy regulation by LARS could lead to development of new therapeutics for IFLS1.


Cells ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 1090 ◽  
Author(s):  
Burkitkan Akbay ◽  
Anna Shmakova ◽  
Yegor Vassetzky ◽  
Svetlana Dokudovskaya

Mammalian target of rapamycin complex 1 (mTORC1) is a master regulator of cellular proliferation and survival which controls cellular response to different stresses, including viral infection. HIV-1 interferes with the mTORC1 pathway at every stage of infection. At the same time, the host cells rely on the mTORC1 pathway and autophagy to fight against virus replication and transmission. In this review, we will provide the most up-to-date picture of the role of the mTORC1 pathway in the HIV-1 life cycle, latency and HIV-related diseases. We will also provide an overview of recent trends in the targeting of the mTORC1 pathway as a promising strategy for HIV-1 eradication.


Sign in / Sign up

Export Citation Format

Share Document