scholarly journals Downregulation of PHLPP induced by endoplasmic reticulum stress promotes eIF2α phosphorylation and chemoresistance in colon cancer

2021 ◽  
Vol 12 (11) ◽  
Author(s):  
Bianqin Guo ◽  
Xiaopeng Xiong ◽  
Sumati Hasani ◽  
Yang-An Wen ◽  
Austin T. Li ◽  
...  

AbstractAberrant activation of endoplasmic reticulum (ER) stress by extrinsic and intrinsic factors contributes to tumorigenesis and resistance to chemotherapies in various cancer types. Our previous studies have shown that the downregulation of PHLPP, a novel family of Ser/Thr protein phosphatases, promotes tumor initiation, and progression. Here we investigated the functional interaction between the ER stress and PHLPP expression in colon cancer. We found that induction of ER stress significantly decreased the expression of PHLPP proteins through a proteasome-dependent mechanism. Knockdown of PHLPP increased the phosphorylation of eIF2α as well as the expression of autophagy-associated genes downstream of the eIF2α/ATF4 signaling pathway. In addition, results from immunoprecipitation experiments showed that PHLPP interacted with eIF2α and this interaction was enhanced by ER stress. Functionally, knockdown of PHLPP improved cell survival under ER stress conditions, whereas overexpression of a degradation-resistant mutant PHLPP1 had the opposite effect. Taken together, our studies identified ER stress as a novel mechanism that triggers PHLPP downregulation; and PHLPP-loss promotes chemoresistance by upregulating the eIF2α/ATF4 signaling axis in colon cancer cells.

2006 ◽  
Vol 80 (15) ◽  
pp. 7354-7363 ◽  
Author(s):  
Matthew Mulvey ◽  
Carolina Arias ◽  
Ian Mohr

ABSTRACT Via careful control of multiple kinases that inactivate the critical translation initiation factor eIF2 by phosphorylation of its alpha subunit, the cellular translation machinery can rapidly respond to a spectrum of environmental stresses, including viral infection. Indeed, virus replication produces a battery of stresses, such as endoplasmic reticulum (ER) stress resulting from misfolded proteins accumulating within the lumen of this organelle, which could potentially result in eIF2α phosphorylation and inhibit translation. While cellular translation is exquisitely sensitive to ER stress-inducing agents, protein synthesis in herpes simplex virus type 1 (HSV-1)-infected cells is notably resistant. Sustained translation in HSV-1-infected cells exposed to acute ER stress does not involve the interferon-induced, double-stranded RNA-responsive eIF2α kinase PKR, and it does not require either the PKR inhibitor encoded by the Us11 gene or the eIF2α phosphatase component specified by the γ134.5 gene, the two viral functions known to regulate eIF2α phosphorylation. In addition, although ER stress potently induced the GADD34 cellular eIF2α phosphatase subunit in uninfected cells, it did not accumulate to detectable levels in HSV-1-infected cells under identical exposure conditions. Significantly, resistance of translation to the acute ER stress observed in infected cells requires HSV-1 gene expression. Whereas blocking entry into the true late phase of the viral developmental program does not abrogate ER stress-resistant translation, the presence of viral immediate-early proteins is sufficient to establish a state permissive of continued polypeptide synthesis in the presence of ER stress-inducing agents. Thus, one or more previously uncharacterized viral functions exist to counteract the accumulation of phosphorylated eIF2α in response to ER stress in HSV-1-infected cells.


2021 ◽  
Vol 12 ◽  
Author(s):  
Verónica Ruiz-Torres ◽  
Nicholas Forsythe ◽  
Almudena Pérez-Sánchez ◽  
Sandra Van Schaeybroeck ◽  
Enrique Barrajón-Catalán ◽  
...  

The present study shows the putative antiproliferative mechanism of action of the previously analytically characterized nudibranch extract ( Dolabella auricularia, NB) and its different effects in colon cancer cells vs. nontumor colon cells. NB extract increased the accumulation of reactive oxygen species (ROS) and increased endoplasmic reticulum (ER) stress via stimulation of the unfolded protein response. Stress scavengers, N-acetylcysteine (NAC) and 4-phenylbutyric acid (4-PBA), decreased the stress induced by NB. The results showed that NB extract increased ER stress through overproduction of ROS in superinvasive colon cancer cells, decreased their resistance threshold, and produced a nonreturn level of ER stress, causing DNA damage and cell cycle arrest, which prevented them from achieving hyperproliferative capacity and migrating to and invading other tissues. On the contrary, NB extract had a considerably lower effect on nontumor human colon cells, suggesting a selective effect related to stress balance homeostasis. In conclusion, our results confirm that the growth and malignancy of colon cancer cells can be decreased by marine compounds through the modification of one of the most potent resistance mechanisms present in tumor cells; this characteristic differentiates cancer cells from nontumor cells in terms of stress balance.


2007 ◽  
Vol 27 (15) ◽  
pp. 5499-5513 ◽  
Author(s):  
Mohamed Rahmani ◽  
Eric Maynard Davis ◽  
Timothy Ryan Crabtree ◽  
Joseph Reza Habibi ◽  
Tri K. Nguyen ◽  
...  

ABSTRACT Sorafenib is a multikinase inhibitor that induces apoptosis in human leukemia and other malignant cells. Recently, we demonstrated that sorafenib diminishes Mcl-1 protein expression by inhibiting translation through a MEK1/2-ERK1/2 signaling-independent mechanism and that this phenomenon plays a key functional role in sorafenib-mediated lethality. Here, we report that inducible expression of constitutively active MEK1 fails to protect cells from sorafenib-mediated lethality, indicating that sorafenib-induced cell death is unrelated to MEK1/2-ERK1/2 pathway inactivation. Notably, treatment with sorafenib induced endoplasmic reticulum (ER) stress in human leukemia cells (U937) manifested by immediate cytosolic-calcium mobilization, GADD153 and GADD34 protein induction, PKR-like ER kinase (PERK) and eukaryotic initiation factor 2α (eIF2α) phosphorylation, XBP1 splicing, and a general reduction in protein synthesis as assessed by [35S]methionine incorporation. These events were accompanied by pronounced generation of reactive oxygen species through a mechanism dependent upon cytosolic-calcium mobilization and a significant decline in GRP78/Bip protein levels. Interestingly, enforced expression of IRE1α markedly reduced sorafenib-mediated apoptosis, whereas knockdown of IRE1α or XBP1, disruption of PERK activity, or inhibition of eIF2α phosphorylation enhanced sorafenib-mediated lethality. Finally, downregulation of caspase-2 or caspase-4 by small interfering RNA significantly diminished apoptosis induced by sorafenib. Together, these findings demonstrate that ER stress represents a central component of a MEK1/2-ERK1/2-independent cell death program triggered by sorafenib.


Molecules ◽  
2018 ◽  
Vol 23 (11) ◽  
pp. 2895 ◽  
Author(s):  
Hye-Uk Jung ◽  
Jeong-Hun Lee ◽  
Kyung-Sook Chung ◽  
Joo Hong ◽  
Jung-Hye Choi ◽  
...  

We previously reported that 5-[4-(4-fluorophenoxy) phenyl] methylene-3-{4-[3-(4-methylpiperazin-1-yl)propoxy]phenyl}-2-thioxo-4-thiazolidinone dihydrochloride (KSK05104) has potent, selective and metabolically stable IKKβ inhibitory activities. However, the apoptosis-inducing of KSK05104 and its underlying mechanism have not yet been elucidated in human colon cancer cells. We show that KSK05104 triggered apoptosis, as indicated by externalization of Annexin V-targeted phosphatidylserine residues in HT-29 and HCT-116 cells. KSK05104 induced the activation of caspase-8, -9, and -3, and the cleavage of poly (ADP ribose) polymerase-1 (PARP-1). KSK05104-induced apoptosis was significantly suppressed by pretreatment with z-VAD-fmk (a broad caspase inhibitor). KSK05104 also induced release of cytochrome c (Cyt c), apoptosis inducing factor (AIF), and endonuclease G (Endo G) by damaging mitochondria, resulting in caspase-dependent and -independent apoptotic cell death. KSK05104 triggered endoplasmic reticulum (ER) stress and changed the intracellular calcium level ([Ca2+]i). Interestingly, treatment with KSK05104 activated not only ER stress marker proteins including inositol-requiring enzyme 1-alpha (IRE-1α) and protein kinase RNA-like endoplasmic reticulum kinase (PERK), but also μ-calpain, and caspase-12 in a time-dependent manner. KSK05104-induced apoptosis substantially decreased in the presence of BAPTA/AM (an intracellular calcium chelator). Taken together, these results suggest that mitochondrial dysfunction and ER stress contribute to KSK05104-induced apoptosis in human colon cancer cells.


2021 ◽  
Vol 22 (11) ◽  
pp. 6018
Author(s):  
Panseon Ko ◽  
Jee-Hye Choi ◽  
Seongeun Song ◽  
Seula Keum ◽  
Jangho Jeong ◽  
...  

During aggressive cancer progression, cancer cells adapt to unique microenvironments by withstanding various cellular stresses, including endoplasmic reticulum (ER) stress. However, the mechanism whereby cancer cells overcome the ER stress to survive remains to be elucidated. Herein, we demonstrated that microtubule acetylation in cancer cells grown on a stiff matrix promotes cancer progression by preventing excessive ER stress. Downregulation of microtubule acetylation using shRNA or CRSIPR/Cas9 techniques targeting ATAT1, which encodes α-tubulin N-acetyltransferase (αTAT1), resulted in the upregulation of ER stress markers, changes in ER morphology, and enhanced tunicamycin-induced UPR signaling in cancer cells. A set of genes involved in cancer progression, especially focal adhesion genes, were downregulated in both ATAT1-knockout and tunicamycin-treated cells, whereas ATAT1 overexpression restored the gene expression inhibited by tunicamycin. Finally, the expression of ATAT1 and ER stress marker genes were negatively correlated in various breast cancer types. Taken together, our results suggest that disruption of microtubule acetylation is a potent therapeutic tool for preventing breast cancer progression through the upregulation of ER stress. Moreover, ATAT1 and ER stress marker genes may be useful diagnostic markers in various breast cancer types.


2021 ◽  
Vol 11 ◽  
Author(s):  
Hao Wang ◽  
Yingxing Xu ◽  
Jialin Sun ◽  
Zhongguo Sui

Reactive oxygen species (ROS) play an important role in cellular metabolism. Many chemotherapeutic drugs are known to promote apoptosis through the production of ROS. In the present study, the novel curcumin derivative, 1g, was found to inhibit tumor growth in colon cancer cells both in vitro and in vivo. Bioinformatics was used to analyze the differentially expressed mRNAs. The mechanism of this effect was a change in mitochondrial membrane potential caused by 1g that increased its pro-apoptotic activity. In addition, 1g produced ROS, induced G1 checkpoint blockade, and enhanced endoplasmic reticulum (ER)-stress in colon cancer cells. Conversely, pretreatment with the ROS scavenging agent N-acetyl-l-cysteine (NAC) inhibited the mitochondrial dysfunction caused by 1g and reversed ER-stress, cell cycle stagnation, and apoptosis. Additionally, pretreatment with the p-PERK inhibitor GSK2606414 significantly reduced ER-stress and reversed the apoptosis induced by colon cancer cells. In summary, the production of ROS plays an important role in the destruction of colon cancer cells by 1g and demonstrates that targeted strategies based on ROS represent a promising approach to inhibit colon cancer proliferation. These findings reveal that the novel curcumin derivative 1g represents a potential candidate therapeutics for the treatment of colon cancer cells, via apoptosis caused by mitochondrial dysfunction and endoplasmic reticulum stress.


2021 ◽  
Vol 22 (11) ◽  
pp. 5566
Author(s):  
Junyan Qu ◽  
Cheng Zeng ◽  
Tingting Zou ◽  
Xu Chen ◽  
Xiaolong Yang ◽  
...  

Colorectal cancer (CRC) is the third leading malignant tumor in the world, which has high morbidity and mortality. In this study we found that trichodermic acid (TDA), a secondary metabolite isolated from the plant endophytic fungus Penicillium ochrochloronthe with a variety of biological and pharmacological activities, exhibited the antitumor effects on colorectal cancer cells in vitro and in vivo. Our results showed that TDA inhibited the proliferation of colon cancer cells in a dose-dependent manner. TDA induces sustained endoplasmic reticulum stress, which triggers apoptosis through IRE1α/XBP1 and PERK/ATF4/CHOP pathways. In addition, we found that TDA mediated endoplasmic reticulum stress also induces autophagy as a protective mechanism. Moreover, combined treatment of TDA with autophagy inhibitors significantly enhanced its anticancer effect. In conclusion, our results indicated that TDA can induce ER stress and autophagy mediated apoptosis, suggesting that targeting ER stress and autophagy may be an effective strategy for the treatment of CRC.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Cristina L. Sanchez ◽  
Savannah G. Sims ◽  
John D. Nowery ◽  
Gordon P. Meares

Abstract In many diseases, misfolded proteins accumulate within the endoplasmic reticulum (ER), leading to ER stress. In response, the cell initiates the unfolded protein response (UPR) to reestablish homeostasis. Additionally, in response to ER stress, various cell types mount an inflammatory response involving interleukin (IL)-6. While IL-6 has been widely studied, the impact of ER stress on other members of the IL-6 cytokine family, including oncostatin (OSM), IL-11, ciliary neurotrophic factor (CNTF), and leukemia inhibitor factor (LIF) remains to be elucidated. Here, we have examined the expression of the IL-6 family cytokines in response to pharmacologically-induced ER stress in astrocytes and macrophages, which express IL-6 in response to ER stress through different mechanisms. Our findings indicate that, in astrocytes, ER stress regulates mRNA expression of the IL-6 family of cytokines that is, in part, mediated by PKR-like ER kinase (PERK) and Janus kinase (JAK) 1. Additionally, in astrocytes, CNTF expression was suppressed through a PERK-dependent mechanism. Macrophages display a different profile of expression of the IL-6 family that is largely independent of PERK. However, IL-6 expression in macrophages was dependent on JAK signaling. Overall, this study demonstrates the cell-specific and differential mechanisms controlling expression of the IL-6 family of cytokines in response to ER stress.


2012 ◽  
Vol 111 (suppl_1) ◽  
Author(s):  
Modar Kassan ◽  
Maria Galan ◽  
Megan Partyka ◽  
Daniel Henrion ◽  
Mohamed Trebak ◽  
...  

Objective: Cardiac damage and vascular dysfunction are major causes of morbidity and mortality in hypertension. In this study, we explored the beneficial therapeutic effect of endoplasmic reticulum (ER) stress inhibition on cardiac damage and vascular dysfunction in hypertension. Methods & results: Mice were infused with angiotensin II (Ang-II, 400 ng/kg/min) with or without ER stress inhibitors (Tudca and PBA) for two weeks. Mice infused with Ang-II displayed an increase in blood pressure, cardiac hypertrophy and fibrosis associated with enhanced collagen-I content, TGFβ1 activity, and ER stress markers, which were blunted after ER stress inhibition. Hypertension induced ER stress in aorta and mesenteric resistance arteries (MRA), enhanced TGFβ1 activity in aorta but not in MRA, and reduced eNOS phosphorylation and endothelium-dependent relaxation (EDR) in aorta and MRA. The inhibition of ER stress significantly reduced TGFβ1 activity, enhanced eNOS phosphorylation and improved EDR. The inhibition of TGFβ1 pathway improved EDR in aorta but not in MRA, while the reduction in ROS levels ameliorated EDR in MRA only. Infusion of tunicamycin in control mice induced ER stress in aorta and MRA, and reduced EDR by a TGFβ1-dependent mechanism in aorta and ROS-dependent mechanism in MRA. Conclusion: ER stress inhibition reduces cardiac damage and improves vascular function in hypertension. Therefore ER stress could be a potential target for cardiovascular diseases.


Sign in / Sign up

Export Citation Format

Share Document