scholarly journals TRAP1 inhibits MIC60 ubiquitination to mitigate the injury of cardiomyocytes and protect mitochondria in extracellular acidosis

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Lingxiao Zhang ◽  
Ning Su ◽  
Yuanyuan Luo ◽  
Siyin Chen ◽  
Tongfeng Zhao

AbstractExtracellular acidosis-induced mitochondrial damage of cardiomyocytes leads to cardiac dysfunction, but no detailed mechanism or efficient therapeutic target has been reported. Here we found that the protein levels of MIC60 were decreased in H9C2 cells and heart tissues in extracellular acidosis, which caused mitochondrial damage and cardiac dysfunction. Overexpression of MIC60 maintains H9C2 cells viability, increases ATP production and mitochondrial membrane potential, mitigates the disruptions of mitochondrial structure and cardiac injury. Mechanistically, extracellular acidosis excessively promoted MIC60 ubiquitin-dependent degradation. TRAP1 mitigated acidosis-induced mitochondrial impairments and cardiac injury by directly interacting with MIC60 to decrease its ubiquitin-dependent degradation in extracellular acidosis.

Author(s):  
Ngo Thi Hai Yen ◽  
Bui Thi Van Khanh ◽  
Vu Thao Hien ◽  
To Thanh Thuy ◽  
Pham Thi Bich ◽  
...  

We examined the effects of carbonyl-cyanide m-chlorophenylhydrazone (CCCP) on mitochondrial function of H9C2 cells. Composition of mitochondrial membrane lipids (cardiolipin) and mitochondrial membrane potential was analyzed by fluorescence intensity change of tetramethl rhodamine ethyl ester (TMRE) and 10-nonyl acridine orange (NAO) using the LSM800 confocal microscope. Our results showed that CCCP strongly and simultaneously affected mitochondrial structure and function of H9C2 cells.


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Dong Kwon Yang ◽  
Shang-Jin Kim

Cucurbitacin I, a triterpenoid natural compound, exhibits various pharmacological properties, including anticancer, anti-inflammatory, and hepatoprotective properties. However, antioxidant effects of cucurbitacin I in cardiac cells are currently unknown. In the present study, we assessed the preventive effects of cucurbitacin I against the oxidative stress in H9c2 cardiomyoblasts. To evaluate antioxidant effects of cucurbitacin I in H9c2 cardiomyoblasts, H2O2-treated H9c2 cells were pretreated with various concentrations of the cucurbitacin I. Cell viability, reactive oxygen species (ROS) production, and apoptosis were determined to elucidate the protective effects of cucurbitacin I against H2O2-induced oxidative stress in H9c2 cells. In addition, we assessed the mitochondrial functions and protein expression levels of mitogen-activated protein kinases (MAPKs). Cucurbitacin I prevented the cells against cell death and ROS production and elevated the antioxidant protein levels upon oxidative stress. Furthermore, cucurbitacin I preserved the mitochondrial functions and inhibited the apoptotic responses in H2O2-treated cells. Cucurbitacin I also suppressed the activation of MAPK proteins (extracellular signal-regulated kinase 1/2, c-Jun N-terminal kinase, and p38). Collectively, cucurbitacin I potentially protects the H9c2 cardiomyoblasts against oxidative stress and further suggests that it can be utilized as a therapeutic agent for the prevention of oxidative stress in cardiac injury.


2021 ◽  
Vol 7 (2) ◽  
pp. 123
Author(s):  
Tongfei Lai ◽  
Yangying Sun ◽  
Yaoyao Liu ◽  
Ran Li ◽  
Yuanzhi Chen ◽  
...  

Penicillium expansum is a major postharvest pathogen that mainly threatens the global pome fruit industry and causes great economic losses annually. In the present study, the antifungal effects and potential mechanism of cinnamon oil against P. expansum were investigated. Results indicated that 0.25 mg L−1 cinnamon oil could efficiently inhibit the spore germination, conidial production, mycelial accumulation, and expansion of P. expansum. In addition, it could effectively control blue mold rots induced by P. expansum in apples. Cinnamon oil could also reduce the expression of genes involved in patulin biosynthesis. Through a proteomic quantitative analysis, a total of 146 differentially expressed proteins (DEPs) involved in the carbohydrate metabolic process, most of which were down-regulated, were noticed for their large number and functional significance. Meanwhile, the expressions of 14 candidate genes corresponding to DEPs and the activities of six key regulatory enzymes (involving in cellulose hydrolyzation, Krebs circle, glycolysis, and pentose phosphate pathway) showed a similar trend in protein levels. In addition, extracellular carbohydrate consumption, intracellular carbohydrate accumulation, and ATP production of P. expansum under cinnamon oil stress were significantly decreased. Basing on the correlated and mutually authenticated results, we speculated that disturbing the fungal carbohydrate metabolic process would be partly responsible for the inhibitory effects of cinnamon oil on P. expansum growth. The findings would provide new insights into the antimicrobial mode of cinnamon oil.


2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Dilip Jayasimhan ◽  
Simon Foster ◽  
Catherina L. Chang ◽  
Robert J. Hancox

Abstract Background Acute respiratory distress syndrome (ARDS) is a leading cause of morbidity and mortality in the intensive care unit. Biochemical markers of cardiac dysfunction are associated with high mortality in many respiratory conditions. The aim of this systematic review is to examine the link between elevated biomarkers of cardiac dysfunction in ARDS and mortality. Methods A systematic review of MEDLINE, EMBASE, Web of Science and CENTRAL databases was performed. We included studies of adult intensive care patients with ARDS that reported the risk of death in relation to a measured biomarker of cardiac dysfunction. The primary outcome of interest was mortality up to 60 days. A random-effects model was used for pooled estimates. Funnel-plot inspection was done to evaluate publication bias; Cochrane chi-square tests and I2 tests were used to assess heterogeneity. Results Twenty-two studies were included in the systematic review and 18 in the meta-analysis. Biomarkers of cardiac stretch included NT-ProBNP (nine studies) and BNP (six studies). Biomarkers of cardiac injury included Troponin-T (two studies), Troponin-I (one study) and High-Sensitivity-Troponin-I (three studies). Three studies assessed multiple cardiac biomarkers. High levels of NT-proBNP and BNP were associated with a higher risk of death up to 60 days (unadjusted OR 8.98; CI 4.15-19.43; p<0.00001). This association persisted after adjustment for age and illness severity. Biomarkers of cardiac injury were also associated with higher mortality, but this association was not statistically significant (unadjusted OR 2.21; CI 0.94-5.16; p= 0.07). Conclusion Biomarkers of cardiac stretch are associated with increased mortality in ARDS.


2018 ◽  
Vol 50 (6) ◽  
pp. 2086-2096 ◽  
Author(s):  
Xiaohong  Zhang ◽  
Can Xiao ◽  
Hong Liu

Background/Aims: Ganoderic acid A (GAA) isolated from Ganoderma lucidum, shows various benefit activities, such as anti-tumor activity, anti-HIV activity and hepatoprotective activity. However, the potential effects of GAA on hypoxia-induced injury of cardiomyocytes are still unclear. In this study, we aimed to reveal the effects of GAA on hypoxic-induced H9c2 cell injury, as well as potential underlying molecular mechanisms. Methods: Rat H9c2 cardiomyocytes were cultured in hypoxia condition with different doses of GAA. Cell viability and apoptosis were detected by CCK-8 assay and flow cytometry, respectively. qRT-PCR was performed to assess the expression levels of microRNA-182-5p (miR-182-5p) and phosphatase and tensin homologue (PTEN). Cell transfection was conducted to change the expression levels of miR-182-5p and PTEN in H9c2 cells. Finally, protein levels of key factors involved in cell proliferation, cell apoptosis and PTEN/PI3K/AKT pathway were evaluated using western blotting. Results: Hypoxia treatment significantly induced H9c2 cell viability loss and apoptosis. GAA incubation remarkably protected H9c2 cells from hypoxia-induced viability loss, proliferation inhibition and apoptosis. In addition, GAA obviously enhanced the expression level of miR-182-5p in H9c2 cells. Suppression of miR-182-5p notably alleviated the protective effects of GAA on hypoxia-treated H9c2 cells. Furthermore, miR-182-5p negatively regulated the mRNA and protein levels of PTEN in H9c2 cells. GAA attenuated hypoxia-induced inactivation of PI3K/AKT pathway in H9c2 cells by up-regulating miR-182-5p and then down-regulating PTEN. Conclusion: GAA protected rat H9c2 cardiomyocytes from hypoxia-induced injury might via up-regulating miR-182-5p, down-regulating PTEN and then activating PI3K/AKT signaling pathway.


2001 ◽  
Vol 280 (5) ◽  
pp. E761-E769 ◽  
Author(s):  
Kevin R. Short ◽  
Jonas Nygren ◽  
Rocco Barazzoni ◽  
James Levine ◽  
K. Sreekumaran Nair

Triiodothyronine (T3) increases O2 and nutrient flux through mitochondria (Mito) of many tissues, but it is unclear whether ATP synthesis is increased, particularly in different types of skeletal muscle, because variable changes in uncoupling proteins (UCP) and enzymes have been reported. Thus Mito ATP production was measured in oxidative and glycolytic muscles, as well as in liver and heart, in rats administered T3 for 14 days. Relative to saline-treated controls, T3 rats had 80, 168, and 62% higher ATP production in soleus muscle, liver, and heart, respectively, as well as higher activities of citrate synthase (CS; 63, 90, 25%) and cytochrome c oxidase (COX; 119, 225, 52%) in the same tissues (all P < 0.01). In plantaris muscle of T3 rats, CS was only slightly higher (17%, P < 0.05) than in controls, and ATP production and COX were unaffected. mRNA levels of COX I and III were 33 and 47% higher in soleus of T3 rats ( P < 0.01), but there were no differences in plantaris. In contrast, UCP2 and -3 mRNAs were 2.5- to 14-fold higher, and protein levels were 3- to 10-fold higher in both plantaris and soleus of the T3 group. We conclude that T3 increases oxidative enzymes and Mito ATP production and Mito-encoded transcripts in oxidative but not glycolytic rodent tissues. Despite large increases in UCP expression, ATP production was enhanced in oxidative tissues and maintained in glycolytic muscle of hyperthyroid rats.


Biomolecules ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1667
Author(s):  
Jian-Hong Lin ◽  
Kun-Ta Yang ◽  
Pei-Ching Ting ◽  
Yu-Po Luo ◽  
Ding-Jyun Lin ◽  
...  

Myocardial ischemia/reperfusion (I/R) injury has been associated with ferroptosis, which is characterized by an iron-dependent accumulation of lipid peroxide to lethal levels. Gossypol acetic acid (GAA), a natural product taken from the seeds of cotton plants, prevents oxidative stress. However, the effects of GAA on myocardial I/R-induced ferroptosis remain unclear. This study investigated the ability of GAA to attenuate I/R-induced ferroptosis in cardiomyocytes along with the underlying mechanisms in a well-established rat model of myocardial I/R and isolated neonatal rat cardiomyocytes. H9c2 cells and cardiomyocytes were treated with the ferroptosis inducers erastin, RSL3, and Fe-SP. GAA could protect H9c2 cells against ferroptotic cell death caused by these ferroptosis inducers by decreasing the production of malondialdehyde and reactive oxygen species, chelating iron content, and downregulating mRNA levels of Ptgs2. GAA could prevent oxygen-glucose deprivation/reperfusion-induced cell death and lipid peroxidation in the cardiomyocytes. Moreover, GAA significantly attenuated myocardial infarct size, reduced lipid peroxidation, decreased the mRNA levels of the ferroptosis markers Ptgs2 and Acsl4, decreased the protein levels of ACSL4 and NRF2, and increased the protein levels of GPX4 in I/R-induced ex vivo rat hearts. Thus, GAA may play a cytoprotectant role in ferroptosis-induced cardiomyocyte death and myocardial I/R-induced ferroptotic cell death.


Author(s):  
Arash Aghajani Nargesi ◽  
Mohamed C Farah ◽  
Xiang-Yang Zhu ◽  
Lei Zhang ◽  
Hui Tang ◽  
...  

Abstract Background Subjects with renovascular hypertension (RVH) often manifest with metabolic syndrome (MetS) as well. Coexisting MetS and hypertension increases cardiovascular morbidity and mortality, but the mechanisms underlying cardiac injury remain unknown. We hypothesized that superimposition of MetS induces myocardial mitochondrial damage, leading to cardiac injury and dysfunction in swine RVH. Methods Pigs were studied after 16 weeks of diet-induced MetS with or without RVH (unilateral renal artery stenosis), and Lean controls (n=6 each). Systolic and diastolic cardiac function were assessed by multi-detector CT, and cardiac mitochondrial morphology (transmission electron microscopy) and myocardial function in tissue and isolated mitochondria. Results Body weight was similarly higher in MetS groups vs. Lean. RVH groups achieved significant stenosis and developed hypertension. Mitochondrial matrix density and ATP production were lower and H2O2 production higher in RVH groups versus Lean and MetS. Lean+RVH (but not MetS+RVH) activated mitophagy, which was associated with decreased myocardial expression of mitophagy-related microRNAs. MetS groups exhibited higher numbers of inter-mitochondrial junctions (IMJs), which could have prevented membrane depolarization/activation of mitophagy in MetS+RVH. Cardiac fibrosis, hypertrophy (increased left ventricular muscle mass), and diastolic function (decreased E/A ratio) were greater in MetS+RVH versus Lean+RVH. Conclusions Superimposition of MetS on swine RVH induces myocardial mitochondrial damage and dysfunction. MetS+RVH failed to activate mitophagy, resulting in greater cardiac remodeling, fibrosis, and diastolic dysfunction. Mitochondrial injury and impaired mitophagy may constitute important mechanisms and potential therapeutic targets to ameliorate cardiac damage and dysfunction in patients with coexisting MetS and RVH.


2021 ◽  
Vol 8 ◽  
Author(s):  
Penglong Wu ◽  
Mingqi Cai ◽  
Jinbao Liu ◽  
Xuejun Wang

Background: Catecholamine surges and resultant excessive β-adrenergic stimulation occur in a broad spectrum of diseases. Excessive β-adrenergic stimulation causes cardiomyocyte necrosis, but the underlying mechanism remains obscure. Necroptosis, a major form of regulated necrosis mediated by RIPK3-centered pathways, is implicated in heart failure; however, it remains unknown whether excessive β-adrenergic stimulation-induced cardiac injury involves necroptosis. Hence, we conducted the present study to address these critical gaps.Methods and Results: Two consecutive daily injections of isoproterenol (ISO; 85 mg/kg, s.c.) or saline were administered to adult mixed-sex mice. At 24 h after the second ISO injection, cardiac area with Evans blue dye (EBD) uptake and myocardial protein levels of CD45, RIPK1, Ser166-phosphorylated RIPK1, RIPK3, and Ser345-phosphorylated MLKL (p-MLKL) were significantly greater, while Ser321-phosphorylated RIPK1 was significantly lower, in the ISO-treated than in saline-treated wild-type (WT) mice. The ISO-induced increase of EBD uptake was markedly less in RIPK3−/− mice compared with WT mice (p = 0.016). Pretreatment with the RIPK1-selective inhibitor necrostatin-1 diminished ISO-induced increases in RIPK3 and p-MLKL in WT mice and significantly attenuated ISO-induced increases of EBD uptake in WT but not RIPK3−/− mice.Conclusions: A large proportion of cardiomyocyte necrosis induced by excessive β-adrenergic stimulation belongs to necroptosis and is mediated by a RIPK1–RIPK3-dependent pathway, identifying RIPK1 and RIPK3 as potential therapeutic targets for catecholamine surges.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Ling-Yan Yuan ◽  
Pei-Zhao Du ◽  
Min-Min Wei ◽  
Qi Zhang ◽  
Le Lu ◽  
...  

Background. Aerobic exercise has been proven to have a positive effect on cardiac function after hypertension; however, the mechanism is not entirely clarified. Skeletal muscle mass and microcirculation are closely associated with blood pressure and cardiac function. Objective. This study was designed to investigate the effects of aerobic exercise on the skeletal muscle capillary and muscle mass, to explore the possible mechanisms involved in exercise-induced mitigation of cardiac dysfunction in pressure overload mice. Methods. In this study, 60 BALB/C mice aged 8 weeks were randomly divided into 3 groups: control (CON), TAC, and TAC plus exercise (TAE) group and utilized transverse aortic constriction (TAC) to establish hypertensive model; meanwhile, treadmill training is used for aerobic exercise. After 5 days of recovery, mice in the TAE group were subjected to 10-week aerobic exercise. Carotid pressure and cardiac function were examined before mice were executed by Millar catheter and ultrasound, respectively. Muscle mass of gastrocnemius was weighed; cross-sectional area and the number of capillaries of gastrocnemius were detected by HE and immunohistochemistry, respectively. The mRNA and protein levels of VEGF in skeletal muscle were determined by RT-PCR and western blot, respectively. Results. We found that ① 10-week aerobic exercise counteracted hypertension and attenuated cardiac dysfunction in TAC-induced hypertensive mice; ② TAC decreased muscle mass of gastrocnemius and resulted in muscle atrophy, while 10-week aerobic exercise could reserve transverse aortic constriction-induced the decline of muscle mass and muscle atrophy; and ③ TAC reduced the number of capillaries and the protein level of VEGF in gastrocnemius, whereas 10-week aerobic exercise augmented the number of capillaries, the mRNA and protein levels of VEGF in mice were subjected to TAC surgery. Conclusions. This study indicates that 10-week aerobic exercise might fulfill its blood pressure-lowering effect via improving skeletal muscle microcirculation and increasing muscle mass.


Sign in / Sign up

Export Citation Format

Share Document