scholarly journals Cinnamon Oil Inhibits Penicillium expansum Growth by Disturbing the Carbohydrate Metabolic Process

2021 ◽  
Vol 7 (2) ◽  
pp. 123
Author(s):  
Tongfei Lai ◽  
Yangying Sun ◽  
Yaoyao Liu ◽  
Ran Li ◽  
Yuanzhi Chen ◽  
...  

Penicillium expansum is a major postharvest pathogen that mainly threatens the global pome fruit industry and causes great economic losses annually. In the present study, the antifungal effects and potential mechanism of cinnamon oil against P. expansum were investigated. Results indicated that 0.25 mg L−1 cinnamon oil could efficiently inhibit the spore germination, conidial production, mycelial accumulation, and expansion of P. expansum. In addition, it could effectively control blue mold rots induced by P. expansum in apples. Cinnamon oil could also reduce the expression of genes involved in patulin biosynthesis. Through a proteomic quantitative analysis, a total of 146 differentially expressed proteins (DEPs) involved in the carbohydrate metabolic process, most of which were down-regulated, were noticed for their large number and functional significance. Meanwhile, the expressions of 14 candidate genes corresponding to DEPs and the activities of six key regulatory enzymes (involving in cellulose hydrolyzation, Krebs circle, glycolysis, and pentose phosphate pathway) showed a similar trend in protein levels. In addition, extracellular carbohydrate consumption, intracellular carbohydrate accumulation, and ATP production of P. expansum under cinnamon oil stress were significantly decreased. Basing on the correlated and mutually authenticated results, we speculated that disturbing the fungal carbohydrate metabolic process would be partly responsible for the inhibitory effects of cinnamon oil on P. expansum growth. The findings would provide new insights into the antimicrobial mode of cinnamon oil.

2021 ◽  
Vol 7 (6) ◽  
pp. 449
Author(s):  
Mónica Gandía ◽  
Anant Kakar ◽  
Moisés Giner-Llorca ◽  
Jeanett Holzknecht ◽  
Pedro Martínez-Culebras ◽  
...  

Penicillium phytopathogenic species provoke severe postharvest disease and economic losses. Penicillium expansum is the main pome fruit phytopathogen while Penicillium digitatum and Penicillium italicum cause citrus green and blue mold, respectively. Control strategies rely on the use of synthetic fungicides, but the appearance of resistant strains and safety concerns have led to the search for new antifungals. Here, the potential application of different antifungal proteins (AFPs) including the three Penicillium chrysogenum proteins (PAF, PAFB and PAFC), as well as the Neosartorya fischeri NFAP2 protein to control Penicillium decay, has been evaluated. PAFB was the most potent AFP against P. digitatum, P. italicum and P. expansum, PAFC and NFAP2 showed moderate antifungal activity, whereas PAF was the least active protein. In fruit protection assays, PAFB provoked a reduction of the incidence of infections caused by P. digitatum and P. italicum in oranges and by P. expansum in apples. A combination of AFPs did not result in an increase in the efficacy of disease control. In conclusion, this study expands the antifungal inhibition spectrum of the AFPs evaluated, and demonstrates that AFPs act in a species-specific manner. PAFB is a promising alternative compound to control Penicillium postharvest fruit decay.


2017 ◽  
Vol 121 (suppl_1) ◽  
Author(s):  
Jessica Peoples ◽  
Timmi Maxmillian ◽  
Quynh Le ◽  
Sergiy M Nadtochiy ◽  
Paul Brookes ◽  
...  

Cardiac energy demands increase during embryonic development, requiring activation of oxidative phosphorylation to convert ADP to ATP in mitochondria. We have recently shown that adrenergic hormones are required to maintain sufficient cardiac energy metabolism during embryonic development, but the specific mechanism(s) underlying this regulation are not known. Mouse embryos lacking the adrenergic hormones, norepinephrine (NE) and epinephrine (EPI), due to targeted loss of the dopamine β-hydroxylase ( Dbh ) gene, have markedly (>50-fold) decreased steady-state ATP/ADP ratios. Rates of ATP synthesis and hydrolysis did not differ between adrenergic-deficient and competent embryos suggesting the enzymatic machinery required for ATP production/consumption is functional. We hypothesized that adrenergic-deficient embryonic hearts are metabolically starved of nutrients leading to energy depletion. To identify changes in metabolism in adrenergic-deficient hearts, we performed LC-MS metabolomics, which showed decreases in all nucleotide triphosphates (NTPs) and NAD(H) confirming energy depletion. Additionally, products of glyceraldehyde-3-phosphate dehydrogenase (GAPDH), glucose-6-phosphate dehydrogenase (G-6-PDH), and pyruvate dehydrogenase (PDH) were significantly diminished compared to controls, suggesting impaired activity. Enzymatic activities of GAPDH, G-6-PDH, PDH, and glycogen phosphorylase (GP); a well-known enzyme under adrenergic regulation, were measured from the rate of NAD(P)H production. GAPDH, G-6-PDH, and GP activities were significantly decreased (~80%, 40%, and 70% reduction, respectively) compared to controls. Interestingly, GAPDH, G-6-PDH, and GP protein levels, examined by western blot, did not differ from adrenergic-competent controls, thereby suggesting that adrenergic hormones regulate posttranslational activity of these enzymes. These results indicate that mitochondria are metabolically starved due to impairments in glycogenolysis, glycolysis, and pentose phosphate pathways. These findings reveal new mechanistic insights into global adrenergic regulation of major metabolic pathways during embryonic heart development.


Animals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 489
Author(s):  
Sylwia Prochowska ◽  
Agnieszka Partyka ◽  
Wojciech Niżański

Apoptosis is a crucial process in spermatogenesis, responsible for the elimination of abnormal sperm cells and testicular regression out of breeding season. The aim of this study was to assess if the expression of apoptosis-related genes in testicular tissue of domestic cats differed: (1) between normozoospermic and teratozoospermic donors, and (2) between reproductive and non-reproductive season. The expression of genes: BCL2L1, BCL2, BAX, BAD, FAS, FASLG, and caspases (CASP3, CASP8, CASP9, and CASP10) was analyzed by qRT-PCR in testicular tissue samples. During non-reproductive season significantly higher expression of two anti-apoptotic genes (BCL2L1 and BCL2) was observed. Additionally, there was a significant higher expression of CASP10 in teratozoospermic cats during non-reproductive than during reproductive season. No differences were noted between normozoospermic and teratozoospermic groups. Upregulation of some genes during the non-reproductive season indicates engagement of apoptotic mechanisms in the seasonal changes of semen quality in cats, however further studies on protein levels and analysis of changes on distinct testicular germinal layers are required. At the same time, teratozoospermia in the general population of cats seems to be not connected with dysregulation of apoptosis in the testes.


2020 ◽  
Author(s):  
Maik Hintze ◽  
Sebastian Griesing ◽  
Marion Michels ◽  
Birgit Blanck ◽  
Lena Wischhof ◽  
...  

AbstractWe investigated the contribution of apoptosis-inducing factor (AIF), a key regulator of mitochondrial biogenesis, in supporting hair growth. We report that pelage abnormalities developed during hair follicle (HF) morphogenesis in Harlequin (Hq) mutant mice. Fragility of the hair cortex was associated with decreased expression of genes encoding structural hair proteins, though key transcriptional regulators of HF development were expressed at normal levels. Notably, Aifm1 (R200 del) knockin males and Aifm1(R200 del)/Hq females showed minor hair defects, despite substantially reduced AIF levels. Furthermore, we cloned the integrated ecotropic provirus of the Aifm1Hq allele. We found that its overexpression in wild-type keratinocyte cell lines led to down-regulation of HF-specific Krt84 and Krtap3-3 genes without altering Aifm1 or epidermal Krt5 expression. Together, our findings imply that pelage paucity in Hq mutant mice is mechanistically linked to severe AIF deficiency and is associated with the expression of retroviral elements that might potentially influence the transcriptional regulation of structural hair proteins.


2001 ◽  
Vol 280 (5) ◽  
pp. E761-E769 ◽  
Author(s):  
Kevin R. Short ◽  
Jonas Nygren ◽  
Rocco Barazzoni ◽  
James Levine ◽  
K. Sreekumaran Nair

Triiodothyronine (T3) increases O2 and nutrient flux through mitochondria (Mito) of many tissues, but it is unclear whether ATP synthesis is increased, particularly in different types of skeletal muscle, because variable changes in uncoupling proteins (UCP) and enzymes have been reported. Thus Mito ATP production was measured in oxidative and glycolytic muscles, as well as in liver and heart, in rats administered T3 for 14 days. Relative to saline-treated controls, T3 rats had 80, 168, and 62% higher ATP production in soleus muscle, liver, and heart, respectively, as well as higher activities of citrate synthase (CS; 63, 90, 25%) and cytochrome c oxidase (COX; 119, 225, 52%) in the same tissues (all P < 0.01). In plantaris muscle of T3 rats, CS was only slightly higher (17%, P < 0.05) than in controls, and ATP production and COX were unaffected. mRNA levels of COX I and III were 33 and 47% higher in soleus of T3 rats ( P < 0.01), but there were no differences in plantaris. In contrast, UCP2 and -3 mRNAs were 2.5- to 14-fold higher, and protein levels were 3- to 10-fold higher in both plantaris and soleus of the T3 group. We conclude that T3 increases oxidative enzymes and Mito ATP production and Mito-encoded transcripts in oxidative but not glycolytic rodent tissues. Despite large increases in UCP expression, ATP production was enhanced in oxidative tissues and maintained in glycolytic muscle of hyperthyroid rats.


2019 ◽  
Vol 12 (11) ◽  
pp. 1707-1715 ◽  
Author(s):  
Ahmed Mohammed Erfan ◽  
Sherif Marouf

Background and Aim: Respiratory bacterial agents represent one of the most harmful factors that ordinarily threaten the poultry industry and usually lead to great economic losses. Meanwhile, there is a global demand to avoid the highly emerging antibiotic resistance and antibiotic residues in edible meat. Whereas, the use of alternatives became of great priority, especially for those substances extracted from natural plant origin. The study aimed to evaluate the antibacterial effect of cinnamon oil as a herbal extract on different respiratory bacterial agents. Materials and Methods: One hundred and fifty biological samples were collected through targeted surveillance for respiratory diseased poultry farms representing three governorates, from which bacterial isolation and identification, DNA sequencing of representative strains were performed. Furtherly, phenotypic and genotypic evaluation of the antibacterial effect of cinnamon oil was performed by minimum inhibitory concentration, agar disk diffusion, and virulence genes expression real-time polymerase chain reaction. Results: Cinnamon oil gave rise to acceptable degrees of virulence genes downregulation of 0.15, 0.19, 0.37, 0.41, 0.77, and 0.85 for Staphylococcus aureus sed gene, Escherichia coli stx1 gene, Avibacterium paragallinarum HPG-2 gene, Pasteurella multocida ptfA gene, Mycoplasma gallisepticum Mgc2 gene, and Ornithobacterium rhinotracheale adk gene, respectively. Phenotypically, using agar disk diffusion assay and broth microdilution susceptibility, cinnamon oil showed also tolerable results as it stopped the growth of S. aureus, E. coli, P. multocida, and A. paragallinarum with varying zones of inhibition. Conclusion: The encountered results declared the successful in vitro effect of cinnamon oil that recommends its application for living birds for future use as a safe antibacterial in the poultry industry.


1996 ◽  
Vol 270 (2) ◽  
pp. F245-F253 ◽  
Author(s):  
J. H. Dominguez ◽  
C. C. Hale ◽  
M. Qulali

Gentamicin nephrotoxicity may arise in part from alterations in the expression of genes critical for renal proximal tubule metabolism. We tested the hypothesis that gentamicin suppressed the gene expression of the Na+/Ca2+ exchanger (NaCaX), glucose transporter 1 (GLUT1) and alpha 1-subunit of Na(+)-K(+)-ATPase (alpha 1-NKA) in renal tubules. The products of these genes mediate Na(+)-dependent Ca2+ efflux, glucose efflux and influx, and ATP-dependent Na+ efflux across tubular basolateral membranes, respectively. After 10 days of gentamicin intoxication (40 mg/kg ip, twice daily), levels of mRNAs encoding NaCaX and the cognate protein declined. GLUT1 mRNA levels increased, although GLUT1 protein levels were also reduced. Moreover, whereas alpha 1-NKA mRNA levels remained unchanged, alpha 1-NKA protein levels were also reduced. We suggest that the higher GLUT1 mRNA level is part of the stress response to tubular injury. However, regardless of the mRNA level, the most consistent effect of gentamicin was reduction of specific protein levels. We propose that failure to translate high levels of mRNA into proportionally high levels of protein, as in the case of GLUT1, may attenuate the expression of stress response gene products, and thus diminish the possibility of recovery in gentamicin intoxication.


Insects ◽  
2020 ◽  
Vol 11 (10) ◽  
pp. 663
Author(s):  
Rachid Elaini ◽  
Romisa Asadi ◽  
Neil Naish ◽  
Martha Koukidou ◽  
Mazih Ahmed

The Mediterranean fruit fly (medfly), Ceratitis capitata, is a significant pest of stone and pome fruit that causes considerable economic losses worldwide. Current control is primarily based on insecticides, which are often mixed with protein baits. Oxitec has developed a self-limiting medfly strain (OX3864A) that demonstrates conditional female-specific mortality in the early life stages. Sustained release of OX3864A males offers medfly control, which should lead to substantial economic benefits in area-wide programmes. In the current study, the optimum quantities of mature and immature stages of the strain are assessed under semi-mass production. Moreover, the rearing and quality control limitations related to the production of this strain are provided. The data here demonstrate that the egg hatch rate can reach >85% under optimum rearing conditions. However, this depends on the number of pupae loaded in a cage and their ages. The suggested pupal density ranges between 14,000 and 18,000 pupae per cage to provide optimum egg production. In parallel, the embryo densities of 1.25–1.5 mL/kg larval Tet+ diet are recommended for strain propagation, while embryo densities of 1.25–2.0 mL/kg larval Tet− diet are suggested for male-only pupal production.


2013 ◽  
Vol 450 (3) ◽  
pp. 595-605 ◽  
Author(s):  
Peter Spégel ◽  
Vladimir V. Sharoyko ◽  
Isabel Goehring ◽  
Anders P. H. Danielsson ◽  
Siri Malmgren ◽  
...  

Insulin secretion is coupled with changes in β-cell metabolism. To define this process, 195 putative metabolites, mitochondrial respiration, NADP+, NADPH and insulin secretion were measured within 15 min of stimulation of clonal INS-1 832/13 β-cells with glucose. Rapid responses in the major metabolic pathways of glucose occurred, involving several previously suggested metabolic coupling factors. The complexity of metabolite changes observed disagreed with the concept of one single metabolite controlling insulin secretion. The complex alterations in metabolite levels suggest that a coupling signal should reflect large parts of the β-cell metabolic response. This was fulfilled by the NADPH/NADP+ ratio, which was elevated (8-fold; P<0.01) at 6 min after glucose stimulation. The NADPH/NADP+ ratio paralleled an increase in ribose 5-phosphate (>2.5-fold; P<0.001). Inhibition of the pentose phosphate pathway by trans-dehydroepiandrosterone (DHEA) suppressed ribose 5-phosphate levels and production of reduced glutathione, as well as insulin secretion in INS-1 832/13 β-cells and rat islets without affecting ATP production. Metabolite profiling of rat islets confirmed the glucose-induced rise in ribose 5-phosphate, which was prevented by DHEA. These findings implicate the pentose phosphate pathway, and support a role for NADPH and glutathione, in β-cell stimulus-secretion coupling.


Sign in / Sign up

Export Citation Format

Share Document