scholarly journals Cryo-EM structures and transport mechanism of human P5B type ATPase ATP13A2

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Xudong Chen ◽  
Mingze Zhou ◽  
Sensen Zhang ◽  
Jian Yin ◽  
Ping Zhang ◽  
...  

AbstractPolyamines are important polycations that play critical roles in mammalian cells. ATP13A2 belongs to the orphan P5B adenosine triphosphatases (ATPase) family and has been established as a lysosomal polyamine exporter to maintain the normal function of lysosomes and mitochondria. Previous studies have reported that several human neurodegenerative disorders are related to mutations in the ATP13A2 gene. However, the transport mechanism of ATP13A2 in the lysosome remains unclear. Here, we report the cryo-electron microscopy (cryo-EM) structures of three distinct intermediates of the human ATP13A2, revealing key insights into the spermine (SPM) transport cycle in the lysosome. The transmembrane domain serves as a substrate binding site and the C-terminal domain is essential for protein stability and may play a regulatory role. These findings advance our understanding of the polyamine transport mechanism, the lipid-associated regulation, and the disease-associated mutants of ATP13A2.

2021 ◽  
Author(s):  
Sue Im Sim ◽  
Sören von Bülow ◽  
Gerhard Hummer ◽  
Eunyong Park

Polyamines are small, organic polycations that are ubiquitous and essential to all forms of life. Currently, how polyamines are transported across membranes is not understood. Recent studies have suggested that ATP13A2 and its close homologs, collectively known as P5B-ATPases, are polyamine transporters at endo-/lysosomes. Loss-of-function mutations of ATP13A2 in humans cause hereditary early-onset Parkinson's disease. To understand the polyamine transport mechanism of ATP13A2, we determined high-resolution cryo-EM structures of human ATP13A2 in five distinct conformational intermediates, which together represent a near-complete transport cycle of ATP13A2. The structural basis of the polyamine specificity was revealed by an endogenous polyamine molecule bound to a narrow, elongated cavity within the transmembrane domain. The structures show an atypical transport path for a water-soluble substrate, where polyamines may exit within the cytosolic leaflet of the membrane. Our study provides important mechanistic insights into polyamine transport and a framework to understand functions and mechanisms of P5B-ATPases.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Ping Li ◽  
Kaituo Wang ◽  
Nina Salustros ◽  
Christina Grønberg ◽  
Pontus Gourdon

AbstractIn human cells, P5B-ATPases execute the active export of physiologically important polyamines such as spermine from lysosomes to the cytosol, a function linked to a palette of disorders. Yet, the overall shape of P5B-ATPases and the mechanisms of polyamine recognition, uptake and transport remain elusive. Here we describe a series of cryo-electron microscopy structures of a yeast homolog of human ATP13A2-5, Ypk9, determined at resolutions reaching 3.4 Å, and depicting three separate transport cycle intermediates, including spermine-bound conformations. Surprisingly, in the absence of cargo, Ypk9 rests in a phosphorylated conformation auto-inhibited by the N-terminus. Spermine uptake is accomplished through an electronegative cleft lined by transmembrane segments 2, 4 and 6. Despite the dramatically different nature of the transported cargo, these findings pinpoint shared principles of transport and regulation among the evolutionary related P4-, P5A- and P5B-ATPases. The data also provide a framework for analysis of associated maladies, such as Parkinson’s disease.


mBio ◽  
2014 ◽  
Vol 5 (4) ◽  
Author(s):  
Giovanni Cardone ◽  
Adam L. Moyer ◽  
Naiqian Cheng ◽  
Cynthia D. Thompson ◽  
Israel Dvoretzky ◽  
...  

ABSTRACTPapillomaviruses are a family of nonenveloped DNA viruses that infect the skin or mucosa of their vertebrate hosts. The viral life cycle is closely tied to the differentiation of infected keratinocytes. Papillomavirus virions are released into the environment through a process known as desquamation, in which keratinocytes lose structural integrity prior to being shed from the surface of the skin. During this process, virions are exposed to an increasingly oxidative environment, leading to their stabilization through the formation of disulfide cross-links between neighboring molecules of the major capsid protein, L1. We used time-lapse cryo-electron microscopy and image analysis to study the maturation of HPV16 capsids assembled in mammalian cells and exposed to an oxidizing environment after cell lysis. Initially, the virion is a loosely connected procapsid that, underin vitroconditions, condenses over several hours into the more familiar 60-nm-diameter papillomavirus capsid. In this process, the procapsid shrinks by ~5% in diameter, its pentameric capsomers change in structure (most markedly in the axial region), and the interaction surfaces between adjacent capsomers are consolidated. A C175S mutant that cannot achieve normal inter-L1 disulfide cross-links shows maturation-related shrinkage but does not achieve the fully condensed 60-nm form. Pseudoatomic modeling based on a 9-Å resolution reconstruction of fully mature capsids revealed C-terminal disulfide-stabilized “suspended bridges” that form intercapsomeric cross-links. The data suggest a model in which procapsids exist in a range of dynamic intermediates that can be locked into increasingly mature configurations by disulfide cross-linking, possibly through a Brownian ratchet mechanism.IMPORTANCEHuman papillomaviruses (HPVs) cause nearly all cases of cervical cancer, a major fraction of cancers of the penis, vagina/vulva, anus, and tonsils, and genital and nongenital warts. HPV types associated with a high risk of cancer, such as HPV16, are generally transmitted via sexual contact. The nonenveloped virion of HPVs shows a high degree of stability, allowing the virus to persist in an infectious form in environmental fomites. In this study, we used cryo-electron microscopy to elucidate the structure of the HPV16 capsid at different stages of maturation. The fully mature capsid adopts a rigid, highly regular structure stabilized by intermolecular disulfide bonds. The availability of a pseudoatomic model of the fully mature HPV16 virion should help guide understanding of antibody responses elicited by HPV capsid-based vaccines.


eLife ◽  
2018 ◽  
Vol 7 ◽  
Author(s):  
Sigrid Noreng ◽  
Arpita Bharadwaj ◽  
Richard Posert ◽  
Craig Yoshioka ◽  
Isabelle Baconguis

The epithelial sodium channel (ENaC), a member of the ENaC/DEG superfamily, regulates Na+ and water homeostasis. ENaCs assemble as heterotrimeric channels that harbor protease-sensitive domains critical for gating the channel. Here, we present the structure of human ENaC in the uncleaved state determined by single-particle cryo-electron microscopy. The ion channel is composed of a large extracellular domain and a narrow transmembrane domain. The structure reveals that ENaC assembles with a 1:1:1 stoichiometry of α:β:γ subunits arranged in a counter-clockwise manner. The shape of each subunit is reminiscent of a hand with key gating domains of a ‘finger’ and a ‘thumb.’ Wedged between these domains is the elusive protease-sensitive inhibitory domain poised to regulate conformational changes of the ‘finger’ and ‘thumb’; thus, the structure provides the first view of the architecture of inhibition of ENaC.


Author(s):  
Kaiming Zhang ◽  
Shanshan Li ◽  
Kan-Yen Hsieh ◽  
Shih-Chieh Su ◽  
Grigore D. Pintilie ◽  
...  

AbstractThe Lon AAA+ (adenosine triphosphatases associated with diverse cellular activities) protease (LonA) converts ATP-fuelled conformational changes into sufficient mechanical force to drive translocation of the substrate into a hexameric proteolytic chamber. To understand the structural basis for the substrate translocation process, we have determined the cryo-electron microscopy (cryo-EM) structure of Meiothermus taiwanensis LonA (MtaLonA) at 3.6 Å resolution in a substrate-engaged state. Substrate interactions are mediated by the dual pore-loops of the ATPase domains, organized in spiral staircase arrangement from four consecutive protomers in different ATP-binding and hydrolysis states; a closed AAA+ ring is nevertheless maintained by two disengaged ADP-bound protomers transiting between the lowest and highest position. The structure reveals a processive rotary translocation mechanism mediated by LonA-specific nucleotide-dependent allosteric coordination among the ATPase domains, which is induced by substrate binding.


2021 ◽  
Author(s):  
Lin Tang ◽  
Chao Xiong ◽  
Lina Jia ◽  
Ming-He Shen ◽  
Wei-Xi Xiong ◽  
...  

Abstract The malfunction of ABCD1 causes X-linked adrenoleukodystrophy (X-ALD), a rare neurodegenerative disease that affect all tissues in human. Residing in the peroxisome membrane, ABCD1 plays a role in the translocation of very long chain fatty acids (VLCFA) for their damage by β-oxidation. Here, we present five Cryo-Electron microscopy structures of ABCD1 in four conformational states. Combined with functional analysis, we found that substrate and ATP trigger the closing of two nucleotide binding domains (NBDs) over a distance of 40 Å and the rearrangement of the transmembrane domains. Each of the three inward-facing structure of ABCD1 has a vestibule opens to cytosol with variable size. Furthermore, the structure of ABCD1 in the outward-facing state supports that ATP molecules pull the two NBDs together and open the transmembrane domain to the peroxisomal lumen for substrate release. The five structures provide a snapshot of substrate transporting cycle and mechanistic implications for disease-causing mutations.


Science ◽  
2019 ◽  
Vol 364 (6445) ◽  
pp. 1068-1075 ◽  
Author(s):  
Jinke Gu ◽  
Laixing Zhang ◽  
Shuai Zong ◽  
Runyu Guo ◽  
Tianya Liu ◽  
...  

The mitochondrial adenosine triphosphate (ATP) synthase produces most of the ATP required by mammalian cells. We isolated porcine tetrameric ATP synthase and solved its structure at 6.2-angstrom resolution using a single-particle cryo–electron microscopy method. Two classical V-shaped ATP synthase dimers lie antiparallel to each other to form an H-shaped ATP synthase tetramer, as viewed from the matrix. ATP synthase inhibitory factor subunit 1 (IF1) is a well-known in vivo inhibitor of mammalian ATP synthase at low pH. Two IF1 dimers link two ATP synthase dimers, which is consistent with the ATP synthase tetramer adopting an inhibited state. Within the tetramer, we refined structures of intact ATP synthase in two different rotational conformations at 3.34- and 3.45-Å resolution.


2020 ◽  
Vol 6 (29) ◽  
pp. eaba8105 ◽  
Author(s):  
Kanae Demura ◽  
Tsukasa Kusakizako ◽  
Wataru Shihoya ◽  
Masahiro Hiraizumi ◽  
Kengo Nomura ◽  
...  

Calcium homeostasis modulator (CALHM) family proteins are Ca2+-regulated adenosine triphosphate (ATP)–release channels involved in neural functions including neurotransmission in gustation. Here, we present the cryo–electron microscopy (EM) structures of killifish CALHM1, human CALHM2, and Caenorhabditis elegans CLHM-1 at resolutions of 2.66, 3.4, and 3.6 Å, respectively. The CALHM1 octamer structure reveals that the N-terminal helix forms the constriction site at the channel pore in the open state and modulates the ATP conductance. The CALHM2 undecamer and CLHM-1 nonamer structures show the different oligomeric stoichiometries among CALHM homologs. We further report the cryo-EM structures of the chimeric construct, revealing that the intersubunit interactions at the transmembrane domain (TMD) and the TMD–intracellular domain linker define the oligomeric stoichiometry. These findings advance our understanding of the ATP conduction and oligomerization mechanisms of CALHM channels.


2021 ◽  
Author(s):  
Juliana Andrea Martinez Fiesco ◽  
David E Durrant ◽  
Deborah K Morrison ◽  
Ping Zhang

An unresolved issue in RAF kinase signaling is how binding of autoinhibited RAF monomers to activated RAS initiates the conformational changes required to form active RAF dimers. Here, we present cryo-electron microscopy structures of full-length BRAF complexes derived from mammalian cells: autoinhibited monomeric BRAF:14-3-32:MEK and BRAF:14-3-32 complexes and an inhibitor-bound, dimeric BRAF2:14-3-32 complex, at 3.7, 4.1, and 3.9 Å resolution, respectively. The RAS binding domain (RBD) of BRAF is resolved in the autoinhibited structures, and we find that neither MEK nor ATP binding is required to stabilize the autoinhibited complexes. Notably, the RBD was found to interact extensively with the 14-3-3 protomer bound to the BRAF C-terminal site. Moreover, through structure-guided mutational studies, our findings indicate that RAS-RAF binding is a dynamic process and that RBD residues at the 14-3-3 interface have a dual function, first stabilizing RBD orientation in the autoinhibited state and then contributing to full RAS contact.


2021 ◽  
Author(s):  
Jue Chen ◽  
Karol Fiedorczuk

Small molecule chaperones have been exploited as therapeutics for the hundreds of diseases caused by protein misfolding. The most successful examples are the CFTR correctors, which transformed cystic fibrosis therapy. These molecules revert folding defects of the ΔF508 mutant and are widely used to treat patients. However, their mechanism of action is unknown. Here we present cryo-electron microscopy structures of CFTR in complex with two FDA-approved correctors: lumacaftor and tezacaftor. Both drugs insert into a hydrophobic pocket in the first transmembrane domain (TMD1), linking together four helices that are thermodynamically unstable. Mutating residues at the binding site rendered ΔF508-CFTR insensitive to lumacaftor and tezacaftor, underscoring the functional significance of the structural discovery. These results support a mechanism in which the correctors stabilize TMD1 at an early stage of biogenesis, prevent its pre-mature degradation, and thereby allosterically rescue a large number of disease-causing mutations.


Sign in / Sign up

Export Citation Format

Share Document