scholarly journals Pulmonary transplantation of alpha-1 antitrypsin (AAT)-transgenic macrophages provides a source of functional human AAT in vivo

Gene Therapy ◽  
2021 ◽  
Author(s):  
Ewa Janosz ◽  
Miriam Hetzel ◽  
Hanna Spielmann ◽  
Srinu Tumpara ◽  
Charlotte Rossdam ◽  
...  

AbstractInherited deficiency of the antiprotease alpha-1 antitrypsin (AAT) is associated with liver failure and early-onset emphysema. In mice, in vivo lentiviral transduction of alveolar macrophages (AMs) has been described to yield protective pulmonary AAT levels and ameliorate emphysema development. We here investigated the pulmonary transplantation of macrophages (PMT) transgenic for AAT as a potential therapy for AAT deficiency-associated lung pathology. Employing third-generation SIN-lentiviral vectors expressing the human AAT cDNA from the CAG or Cbx-EF1α promoter, we obtained high-level AAT secretion in a murine AM cell line as well as murine bone marrow-derived macrophages differentiated in vitro (AAT MΦ). Secreted AAT demonstrated a physiologic glycosylation pattern as well as elastase-inhibitory and anti-apoptotic properties. AAT MΦ preserved normal morphology, surface phenotype, and functionality. Furthermore, in vitro generated murine AAT MΦ successfully engrafted in AM-deficient Csf2rb–/– mice and converted into a CD11c+/Siglec-F+ AM phenotype as detected in bronchoalveolar lavage fluid and homogenized lung tissue 2 months after PMT. Moreover, human AAT was detected in the lung epithelial lining fluid of transplanted animals. Efficient AAT expression and secretion were also demonstrated for human AAT MΦ, confirming the applicability of our vectors in human cells.

1988 ◽  
Vol 64 (5) ◽  
pp. 2092-2099 ◽  
Author(s):  
E. R. Pacht ◽  
W. B. Davis

Lung epithelial lining fluid (ELF) is a thin layer of plasma ultrafiltrate and locally secreted substances that may provide antioxidant protection and serve as a "front-line" defense for the lower respiratory tract epithelium. To characterize the antioxidant properties of ELF, young, healthy, nonsmoking volunteers underwent bronchoalveolar lavage with determination of ELF volumes and ELF proteins. ELF (greater than 0.4 ml) is a potent inhibitor of lipid peroxidation as measured by malondialdehyde (MDA) production in an in vitro iron-dependent assay system. Two serum proteins, transferrin and ceruloplasmin, were quantitated in ELF and found to be potent inhibitors of lipid peroxidation. Other ELF components, including vitamin E, vitamin C, and albumin, did not function as antioxidants in this system. Several experimental observations suggest that ELF transferrin was more important than ceruloplasmin in inhibiting lipid peroxidation: 1) ELF concentrations of transferrin were 20-fold higher than those for ceruloplasmin; 2) ELF antioxidant activity was abolished by preincubation with Fe3+; 3) ELF antioxidant activity was minimally affected by sodium azide, which is known to inhibit ceruloplasmin ferroxidase activity; and 4) ELF ceruloplasmin ferroxidase activity was virtually nondetectable. ELF possesses a significant antioxidant activity that may be important in vivo in protecting the lung from oxidant injury.


1990 ◽  
Vol 69 (5) ◽  
pp. 1843-1848 ◽  
Author(s):  
C. Vogelmeier ◽  
R. Buhl ◽  
R. F. Hoyt ◽  
E. Wilson ◽  
G. A. Fells ◽  
...  

In a variety of lung diseases the respiratory epithelial surface must contend with an increased burden of neutrophil elastase (NE). One candidate for augmenting epithelial anti-NE protection is the secretory leukoprotease inhibitor (SLPI). In vitro evaluation demonstrated that 96 +/- 1% of the recombinant SLPI (rSLPI) molecules were capable of inhibiting NE, with an association rate constant of 7.1 +/- 0.1 X 10(6) M-1.s-1. Evaluation of rSLPI after in vitro and in vivo aerosolization showed that aerosolization did not alter rSLPI. Aerosolization of a single dose of 50 mg rSLPI to sheep resulted in a fourfold increase of the anti-NE capacity in epithelial lining fluid (ELF) at 3 h, with a half-life in ELF of 12 h. After aerosolization some rSLPI appeared in lung lymph. Simultaneous aerosolization of rSLPI and recombinant alpha 1-antitrypsin (rAAT) demonstrated a molar ratio of the concentration in lymph to the concentration in ELF 3 h after the aerosol eightfold higher for rAAT than for rSLPI. Overall, these observations demonstrate that it is feasible to use aerosolized rSLPI to directly augment the anti-NE capacity of the lung, particularly on the pulmonary epithelial surface.


2021 ◽  
pp. 096032712110594
Author(s):  
Xin Tang ◽  
Zhenyu Li ◽  
Zhi Yu ◽  
Jinna Li ◽  
Jinbang Zhang ◽  
...  

Cigarette smoke (CS)-caused ferroptosis was involved in the pathogenesis of COPD, but the role of ferroptosis in lung epithelial injury and inflammation is not clear. Rats were treated with CS or CUR and BEAS-2B cells were exposed to CS extract (CSE), ferrostatin-1 (Fer-1), deferoxamine (DFO), or CUR to detect reactive oxygen species (ROS) accumulation, lipid peroxidation, iron overload, and ferroptosis-related protein, which were the characteristic changes of ferroptosis. Compared with the control group, CSE-treated BEAS-2B cells had more cell death, higher cytotoxicity, and lower cell viability. The infiltration of inflammatory cell around the bronchi in the CS group of rats was more than that in the normal group. Meanwhile, CSE/CS elevated the levels of interleukin-6 and tumor necrosis factor-α in BEAS-2B cells and bronchoalveolar lavage fluid of rats. Besides, accumulative ROS and depleted glutathione was observed in vitro. In BEAS-2B cells and lung tissues of rats, CSE/CS increased malondialdehyde and iron; down-regulated solute carrier family 7, glutathione peroxidase 4, and ferritin heavy chain levels; and up-regulated transferrin receptor level. These changes were rescued by pretreatment of Fer-1 or DFO in vitro, and mitigated by CUR in vitro and in vivo. Collectively, this study reveals that ferroptosis was involved in lung epithelial cell injury and inflammation induced by CS, and CUR may alleviate CS-induced injury, inflammation, and ferroptosis of lung epithelial cell.


1987 ◽  
Vol 166 (1) ◽  
pp. 210-218 ◽  
Author(s):  
D A Williams ◽  
K Hsieh ◽  
A DeSilva ◽  
R C Mulligan

To develop a highly efficient means for generating methotrexate resistant (MTXr) hematopoietic cells in vivo, a recombinant retroviral genome was constructed that encodes a MTXr dihydrofolate reductase (DHFRr). Cell lines producing high titers of virus capable of transmitting the DHFR gene were generated and used to infect mammalian cells in vitro. Analysis of infected fibroblasts indicated that the DHFRr gene was transmitted intact and conferred a high level of MTXr upon cells. Based on these findings, DHFRr-containing virus was used to infect murine bone marrow cells in vitro. Following infection, the transduced cells were introduced into lethally irradiated recipients via bone marrow transplantation techniques. The presence of the proviral sequences in cells of the spleen and bone marrow of engrafted recipients was associated with significantly increased survival of mice treated with otherwise lethal doses of MTX.


2019 ◽  
Author(s):  
Y. Coquin ◽  
M. Ferrand ◽  
A. Seye ◽  
L. Menu ◽  
A. Galy

AbstractSyncytins are cellular transmembrane glycoproteins with fusogenic and immunosuppressive properties that are encoded by endogenous retroviral envelope sequences in mammalian genomes. Based on their properties, syncytins may be useful to pseudotype lentiviral gene transfer vectors (LV) and to obtain well-tolerated in vivo gene delivery but their cellular targets are unknown in this context. We pseudotyped LV with human or murine syncytins. Such LV-Syn particles were infectious in vitro but required a transduction additive, as do other retroviral envelope LV pseudotypes. In these conditions, LV-Syn remarkably transduced quiescent human or murine primary B cells at high level in vitro including naïve blood B cells or B cell precursors from murine bone marrow. Transduced human B cells could be expanded in culture and were functional. Human or murine T cells were transduced less efficiently than B cells, in agreement with lower levels of syncytin receptors on T cells compared to B cells. Well-tolerated in vivo gene transfer was possible without additive, as demonstrated with murine syncytin A-mediated gene delivery in C57BL/6 mice. A single intravenous injection of LV-SynA vector to mice led to stable gene transfer into spleen germinal center B cells. LV-SynA were also intrinsically less immunogenic than LV-VSVG, leading to low antibody responses against the vector capsid. This is the first evidence of interactions between syncytins and B cells, providing novel opportunities for B cell genetic engineering and for well-tolerated gene transfer in vivo. The findings also suggest that some immunosuppressive properties of syncytins could be mediated by B cells.One Sentence SummarySyncytins are fusogenic cellular proteins that can pseudotype lentiviral gene transfer vector particles, achieving efficient gene transfer into primary quiescent B cells and reducing the in vivo immunogenicity of the particles following systemic administration.


2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Jun Liu ◽  
Jipeng Li ◽  
Ke Wang ◽  
Haiming Liu ◽  
Jianyong Sun ◽  
...  

AbstractFork-head box protein M1 (FoxM1) is a transcriptional factor which plays critical roles in cancer development and progression. However, the general regulatory mechanism of FoxM1 is still limited. STMN1 is a microtubule-binding protein which can inhibit the assembly of microtubule dimer or promote depolymerization of microtubules. It was reported as a major responsive factor of paclitaxel resistance for clinical chemotherapy of tumor patients. But the function of abnormally high level of STMN1 and its regulation mechanism in cancer cells remain unclear. In this study, we used public database and tissue microarrays to analyze the expression pattern of FoxM1 and STMN1 and found a strong positive correlation between FoxM1 and STMN1 in multiple types of cancer. Lentivirus-mediated FoxM1/STMN1-knockdown cell lines were established to study the function of FoxM1/STMN1 by performing cell viability assay, plate clone formation assay, soft agar assay in vitro and xenograft mouse model in vivo. Our results showed that FoxM1 promotes cell proliferation by upregulating STMN1. Further ChIP assay showed that FoxM1 upregulates STMN1 in a transcriptional level. Prognostic analysis showed that a high level of FoxM1 and STMN1 is related to poor prognosis in solid tumors. Moreover, a high co-expression of FoxM1 and STMN1 has a more significant correlation with poor prognosis. Our findings suggest that a general FoxM1-STMN1 axis contributes to cell proliferation and tumorigenesis in hepatocellular carcinoma, gastric cancer and colorectal cancer. The combination of FoxM1 and STMN1 can be a more precise biomarker for prognostic prediction.


Oncogene ◽  
2021 ◽  
Author(s):  
Jhih-Kai Pan ◽  
Cheng-Han Lin ◽  
Yao-Lung Kuo ◽  
Luo-Ping Ger ◽  
Hui-Chuan Cheng ◽  
...  

AbstractBrian metastasis, which is diagnosed in 30% of triple-negative breast cancer (TNBC) patients with metastasis, causes poor survival outcomes. Growing evidence has characterized miRNAs involving in breast cancer brain metastasis; however, currently, there is a lack of prognostic plasma-based indicator for brain metastasis. In this study, high level of miR-211 can act as brain metastatic prognostic marker in vivo. High miR-211 drives early and specific brain colonization through enhancing trans-blood–brain barrier (BBB) migration, BBB adherence, and stemness properties of tumor cells and causes poor survival in vivo. SOX11 and NGN2 are the downstream targets of miR-211 and negatively regulate miR-211-mediated TNBC brain metastasis in vitro and in vivo. Most importantly, high miR-211 is correlated with poor survival and brain metastasis in TNBC patients. Our findings suggest that miR-211 may be used as an indicator for TNBC brain metastasis.


Author(s):  
Gege Shu ◽  
Huizhao Su ◽  
Zhiqian Wang ◽  
Shihui Lai ◽  
Yan Wang ◽  
...  

Abstract Background Hepatocellular carcinoma (HCC) has an extremely poor prognosis due to the development of chemoresistance, coupled with inherently increased stemness properties. Long non-coding RNAs (LncRNAs) are key regulators for tumor cell stemness and chemosensitivity. Currently the relevance between LINC00680 and tumor progression was still largely unknown, with only one study showing its significance in glioblastoma. The study herein was aimed at identifying the role of LINC00680 in the regulation HCC stemness and chemosensitivity. Methods QRT-PCR was used to detect the expression of LINC00680, miR-568 and AKT3 in tissue specimen and cell lines. Gain- or loss-of function assays were applied to access the function of LINC00680 in HCC cells, including cell proliferation and stemness properties. HCC stemness and chemosensitivity were determined by sphere formation, cell viability and colony formation. Luciferase reporter, RNA immunoprecipitation (RIP), and RNA pull-down assays were performed to examine the interaction between LINC00680 and miR-568 as well as that between miR-568 and AKT3. A nude mouse xenograft model was established for the in vivo study. Results We found that LINC00680 was remarkably upregulated in HCC tissues. Patients with high level of LINC00680 had poorer prognosis. LINC00680 overexpression significantly enhanced HCC cell stemness and decreased in vitro and in vivo chemosensitivity to 5-fluorouracil (5-Fu), whereas LINC00680 knockdown led to opposite results. Mechanism study revealed that LINC00680 regulated HCC stemness and chemosensitivity through sponging miR-568, thereby expediting the expression of AKT3, which further activated its downstream signaling molecules, including mTOR, elF4EBP1, and p70S6K. Conclusion LINC00680 promotes HCC stemness properties and decreases chemosensitivity through sponging miR-568 to activate AKT3, suggesting that LINC00680 might be a potentially important HCC diagnosis marker and therapeutic target.


2006 ◽  
Vol 50 (6) ◽  
pp. 2231-2233 ◽  
Author(s):  
Xing-Quan Zhang ◽  
Meredith Sorensen ◽  
Michael Fung ◽  
Robert T. Schooley

ABSTRACT Recently, antiretroviral agents directed at several steps involved in viral entry have been shown to reduce viral replication in vitro and in vivo. We have demonstrated a high level of in vitro synergistic antiretroviral activity for two entry inhibitors that are directed at sequential steps in the entry process.


2016 ◽  
Vol 2016 ◽  
pp. 1-14 ◽  
Author(s):  
Igor Z. Barjaktarevic ◽  
Ronald G. Crystal ◽  
Robert J. Kaner

Rationale.Matrix metalloproteinase-9 (MMP-9) expression is upregulated in alveolar macrophages (AM) of HIV1+smokers who develop emphysema. Knowing that lung epithelial lining fluid (ELF) of HIV1+smokers contains increased levels of inflammatory cytokines compared to HIV1−smokers, we hypothesized that upregulation of lung cytokines in HIV1+smokers may be functionally related to increased MMP-9 expression.Methods.Cytokine arrays evaluated cytokine protein levels in ELF obtained from 5 groups of individuals: HIV1−healthy nonsmokers, HIV1−healthy smokers, HIV1−smokers with low diffusing capacity (DLCO), HIV1+nonsmokers, and HIV1+smokers with lowDLCO.Results. Increased levels of the Th17 related cytokine IL-23 were found in HIV1−smokers with lowDLCOand HIV1+smokers and nonsmokers. Relative IL-23 gene expression was increased in AM of HIV1+individuals, with greater expression in AM of HIV1+smokers with lowDLCO. Infection with HIV1in vitroinduced IL-23 expression in normal AM. IL-23 stimulation of AM/lymphocyte coculturesin vitroinduced upregulation of MMP-9. Lung T lymphocytes express receptor IL-23R and interact with AM in order to upregulate MMP-9.Conclusion. This mechanism may contribute to the increased tissue destruction in the lungs of HIV1+smokers and suggests that Th17 related inflammation may play a role.


Sign in / Sign up

Export Citation Format

Share Document