scholarly journals Effects of ozone water irrigation and spraying on physiological characteristics and gene expression of tomato seedlings

2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Jin-Peng Xu ◽  
Yan-Chong Yu ◽  
Tao Zhang ◽  
Qian Ma ◽  
Hong-Bing Yang

AbstractTomato seedlings were used as experimental materials and treated with 1.0, 2.0, 3.0, and 4.0 mg/L ozone water irrigation and 0.2, 0.4, 0.6, and 0.8 mg/L ozone water spray treatments. Indexes including the malondialdehyde (MDA) content, superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT), activities, soil and plant analysis development (SPAD) value, and nitrogen content of leaves were measured. Furthermore, the expression of antioxidant enzyme, chlorophyll synthesis and nitrogen absorption genes was analyzed after optimal ozone water treatment. The results showed that the activities of antioxidant enzymes in tomato leaves were significantly increased, and the MDA content in tomato leaves was significantly reduced by ozone water irrigation and spray treatment, which indicated that ozone water treatment can significantly improve the stress tolerance of tomato seedlings. Ozone water irrigation and spraying could also significantly increase the leaf SPAD value and nitrogen content of tomato seedlings, and the optimal concentrations of ozone water irrigation and spraying were 3.0 mg/L and 0.6 mg/L, respectively. The effect of ozone water irrigation on improving the physiological characteristics of tomato seedlings was better than that of spraying. After treatment with the optimal concentration of ozone water, the relative expression of antioxidant enzyme, chlorophyll synthesis, and nitrogen absorption genes was significantly increased, and the maximum expression level was reached at 12 h. In addition, ozone water irrigation could promote the expression of genes more than ozone water spraying, which was consistent with the improvements in the physiological characteristics of the tomato seedlings.

2019 ◽  
Vol 45 (3) ◽  
pp. 460 ◽  
Author(s):  
Ning HE ◽  
Xue-Yang WANG ◽  
Liang-Zi CAO ◽  
Da-Wei CAO ◽  
Yu LUO ◽  
...  

2015 ◽  
Vol 26 (2) ◽  
pp. 21-25 ◽  
Author(s):  
Marcelina Krupa-Małkiewicz ◽  
Beata Smolik ◽  
Dominik Ostojski ◽  
Maja Sędzik ◽  
Justyna Pelc

AbstractThe aim of this study is to determine the effect of both NaCl and KCl alone and in comparison to AsA on the morphological and some biochemical parameters of Oxheart and Vilma cultivars of tomato under laboratory and field conditions. A combination of salt applied in the laboratory experiment caused a significant effect on seed germination and root and shoot length and a significant reduction of Chl a, Chl b and Car contents in 14-day-old tomato seedlings. However, seedlings of cultivar Vilma were characterised by higher tolerance to applied salt stress.NaCl caused a significant decrease in Chl a, Chl b and Car, and an increase in Pro and MDA content in the leaves of Vilma cultivar under field conditions. Besides, tomato plants cv. Vilma treated with NaCl alone or NaCl with ascorbic acid developed longer roots, from 48 to 73%, compared to the control.


1940 ◽  
Vol 18c (4) ◽  
pp. 136-141 ◽  
Author(s):  
R. Newton ◽  
R. S. Young

Proximate analyses of roots (to plow depth) and stubble in one-, three-, and five-year-old sods, considered in relation to sequence effects as judged by the nitrogen absorption of the first two wheat crops after each age of sod, indicated the nitrogen content of the hay crop residues to be the dominant influence. Alfalfa was much superior to the grasses, a result apparently of the higher quantity of nitrogen returned to the soil and of the narrower C:N ratio in its residues. Timothy led the grasses, contributing the highest quantity of nitrogen in residues with the lowest percentage of crude fibre and the narrowest ratio of crude fibre to nitrogen-free extract. Brome contributed more residual nitrogen than western rye, but was slightly inferior in sequence effects.


ISRN Agronomy ◽  
2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Aman Verma ◽  
C. P. Malik ◽  
V. K. Gupta

This paper deals with the in vitro effects of brassinosteroids (BRs) on growth in the form of multiple shoots, chlorophyll content, Hill reaction activity (HRA), activities of catalase (CAT), peroxidase (POX), polyphenol oxidase (PPX), and ascorbate peroxidase (APX) in Arachis hypogaea L. genotypes (M-13 and PBS24030). In vitro impact of BR on shoot multiplication potential was found to be the best at 1 mL L−1 with BA (3 mg L−1) in both the cultivars. Flowering was observed in PBS24030 on the medium containing 2.0 mL L−1 BR with 3 mg L−1 BA. Rhizogenesis was noticed in the presence of BR alone. Total chlorophyll content and HRA were highest at 2.0 mL L−1 with BA in M-13 and 1.0 mL L−1 with BA in PBS24030. Antioxidant enzyme activities were increased in the presence of BR whether alone or in combination with BA in both the cultivars. However, progressive decline was observed in case of MDA content. The results obtained in the study clearly indicated not only the in vitro establishment of groundnut cultivars in the presence of BR alone and in combination with BA but also its effect on various growth promotory physiological parameters.


2018 ◽  
Vol 15 (3) ◽  
pp. 797-808 ◽  
Author(s):  
Yuewei Guo ◽  
Yunge Zhao

Abstract. Mosses, as major components of later successional biological soil crusts (biocrusts), play many critical roles in arid and semiarid ecosystems. Recently, some species of desiccation-tolerant mosses have been artificially cultured with the aim of accelerating the recovery of biocrusts. Revealing the factors that influence the vegetative propagation of mosses, which is an important reproductive mode of mosses in dry habitats, will benefit the restoration of moss crusts. In this study, three air-dried desiccation-tolerant mosses (Barbula unguiculata, Didymodon vinealis, and Didymodon tectorum) were hermetically sealed and stored at five temperature levels (0, 4, 17, 25, and 30 °C) for 40 days. Then, the vegetative propagation and physiological characteristics of the three mosses were investigated to determine the influence of storage temperature on the vegetative propagation of desiccation-tolerant mosses and the mechanism. The results showed that the vegetative propagation of the three mosses varied with temperature. The most variation in vegetative propagation among storage temperatures was observed in D. tectorum, followed by the variation observed in B. unguiculata. In contrast, no significant difference in propagation among temperatures was found in D. vinealis. The regenerative capacity of the three mosses increased with increasing temperature from 0 to 17 °C, accompanied by a decrease in malondialdehyde (MDA) content, and decreased thereafter. As the temperature increased, the chlorophyll and soluble protein contents increased in B. unguiculata but decreased in D. vinealis and D. tectorum. As to storage, the MDA and soluble sugar contents increased after storage. The MDA content of the three mosses increased at each of the investigated temperatures by more than 50 % from the initial values, and the soluble sugar content became higher than before in the three mosses. The integrity of cells and cell membranes is likely the most important factor influencing the vegetative propagation of desiccation-tolerant mosses. A 40-day storage period caused cell injury. Our results suggest that storage temperature can enhance or suppress such injury and change the regenerative capacity of the three mosses. The data indicate that the suitable storage temperature is 4 °C for B. unguiculata and 17 °C for both D. vinealis and D. tectorum.


2014 ◽  
Vol 29 (4) ◽  
pp. 262-269 ◽  
Author(s):  
Shinji Kodama ◽  
Kazuki Sugiura ◽  
Shota Nakanishi ◽  
Yoshihiro Tsujimura ◽  
Manabu Tanaka ◽  
...  

2017 ◽  
Vol 14 (2) ◽  
pp. 31-45 ◽  
Author(s):  
RR Saha ◽  
F Ahmed ◽  
N Mokarroma ◽  
MM Rohman ◽  
PC Golder

An experiment was conducted under pot culture to investigate physiological responses as well as antioxidative enzymes activities that may lead to select sesame genotype (s) which were more waterlogging tolerant at vegetative stage. Four sesame genotypes viz. BD-6980, BD- 6985, BD-6992 and BD-7012 were grown under waterlogged (at vegetative stage) and control (no waterlogged) conditions. Plant height, root length, root volume, root dry weight and leaf area per plant in all the four sesame genotypes significantly decreased due to waterlogging at vegetative stage in comparison to controlled condition. Higher SPAD value (Soil and Plant Analyzer Development) and specific leaf mass were recorded in waterlogged plant than controlled plant during waterlogging period but reverse was the case during recovery period. All the genotypes showed positive indices of waterlogging tolerance in terms of better performance of root, stem, leaf and petiole. Among the genotypes, BD 6980 showed higher waterlogging tolerance in all the components followed by BD 6985. Malondialdehyde (MDA) content was found higher in waterlogged plant of all the four sesame genotypes in both waterlogging period and recovery period than the controlled plant. Antioxidant enzyme activities like Peroxidase (POD), Catalase (CAT), Ascorbate peroxidase (APX), Glutathione peroxidase (GPX) and Superoxide dismutase(SOD) were inconsistent in the present study but most of the antioxidant enzyme activities showed an increasing trend in waterlogged plant than that of control plant in all the genotypes. Comparatively low amount of MDA content and high antioxidant activities of sesame genotype BD 6980 is considered as highly tolerant to waterlogging and other three genotypes are moderately tolerant under water logging condition.SAARC J. Agri., 14(2): 31-45 (2016)


Sign in / Sign up

Export Citation Format

Share Document