scholarly journals YtfK activates the stringent response by triggering the alarmone synthetase SpoT in Escherichia coli

2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Elsa Germain ◽  
Paul Guiraud ◽  
Deborah Byrne ◽  
Badreddine Douzi ◽  
Meriem Djendli ◽  
...  

AbstractThe stringent response is a general bacterial stress response that allows bacteria to adapt and survive adverse conditions. This reprogramming of cell physiology is caused by the accumulation of the alarmone (p)ppGpp which, in Escherichia coli, depends on the (p)ppGpp synthetase RelA and the bifunctional (p)ppGpp synthetase/hydrolase SpoT. Although conditions that control SpoT-dependent (p)ppGpp accumulation have been described, the molecular mechanisms regulating the switching from (p)ppGpp degradation to synthesis remain poorly understood. Here, we show that the protein YtfK promotes SpoT-dependent accumulation of (p)ppGpp in E. coli and is required for activation of the stringent response during phosphate and fatty acid starvation. Our results indicate that YtfK can interact with SpoT. We propose that YtfK activates the stringent response by tilting the catalytic balance of SpoT toward (p)ppGpp synthesis.

Genes ◽  
2020 ◽  
Vol 11 (4) ◽  
pp. 447
Author(s):  
Klaudyna Krause ◽  
Monika Maciąg-Dorszyńska ◽  
Anna Wosinski ◽  
Lidia Gaffke ◽  
Joanna Morcinek-Orłowska ◽  
...  

A direct link between DNA replication regulation and central carbon metabolism (CCM) has been previously demonstrated in Bacillus subtilis and Escherichia coli, as effects of certain mutations in genes coding for replication proteins could be specifically suppressed by particular mutations in genes encoding CCM enzymes. However, specific molecular mechanism(s) of this link remained unknown. In this report, we demonstrate that various CCM metabolites can suppress the effects of mutations in different replication genes of E. coli on bacterial growth, cell morphology, and nucleoid localization. This provides evidence that the CCM-replication link is mediated by metabolites rather than direct protein-protein interactions. On the other hand, action of metabolites on DNA replication appears indirect rather than based on direct influence on the replication machinery, as rate of DNA synthesis could not be corrected by metabolites in short-term experiments. This corroborates the recent discovery that in B. subtilis, there are multiple links connecting CCM to DNA replication initiation and elongation. Therefore, one may suggest that although different in detail, the molecular mechanisms of CCM-dependent regulation of DNA replication are similar in E. coli and B. subtilis, making this regulation an important and common constituent of the control of cell physiology in bacteria.


2021 ◽  
Author(s):  
Huijing Wang ◽  
GW McElfresh ◽  
Nishantha Wijesuriya ◽  
Adam Podgorny ◽  
Andrew D Hecht ◽  
...  

Cellular responses to stress can cause a similar change in some facets of fitness even if the stresses are different. Lactose as a sole carbon source for Escherichia coli is an established example: too little causes starvation while excessive lactose import causes toxicity as a side-effect. In an E. coli strain that is robust to osmotic and ionic differences in growth media, B REL606, the rate of antibiotic-tolerant persister formation is elevated in both starvation-inducing and toxicity-inducing concentrations of lactose in comparison to less stressful intermediate concentrations. Such similarities between starvation and toxification raise the question of how much the global stress response stimulon differs between them. We hypothesized that a common stress response is conserved between the two conditions, but that a previously shown threshold driving growth rate heterogeneity in a lactose-toxifying medium would reveal that the growing fraction of cells in that medium to be missing key stress responses that curb growth. To test this, we performed RNA-seq in three representative conditions for differential expression analysis. In comparison to nominally unstressed cultures, both stress conditions showed global shifts in gene expression, with informative similarities and differences. Functional analysis of pathways, gene ontology terms, and clusters of orthogonal groups revealed signatures of overflow metabolism, membrane component shifts, and altered cytosolic and periplasmic contents in toxified cultures. Starving cultures showed an increased tendency toward stringent response-like regulatory signatures. Along with other emerging evidence, our results show multiple possible pathways to stress responses, persistence, and possibly other phenotypes. These results suggest a set of overlapping responses that drives emergence of stress-tolerant phenotypes in diverse conditions.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Loïc Léger ◽  
Deborah Byrne ◽  
Paul Guiraud ◽  
Elsa Germain ◽  
Etienne Maisonneuve

Bacteria regulate their metabolism to adapt and survive adverse conditions, in particular to stressful downshifts in nutrient availability. These shifts trigger the so-called stringent response, coordinated by the signaling molecules guanosine tetra and pentaphosphate collectively referred to as (p)ppGpp. In Escherichia coli, accumulation of theses alarmones depends on the (p)ppGpp synthetase RelA and the bifunctional (p)ppGpp synthetase/hydrolase SpoT. A tight regulation of these intracellular activities is therefore crucial to rapidly adjust the (p)ppGpp levels in response to environmental stresses but also to avoid toxic consequences of (p)ppGpp over-accumulation. In this study, we show that the small protein NirD restrains RelA-dependent accumulation of (p)ppGpp and can inhibit the stringent response in E. coli. Mechanistically, our in vivo and in vitro studies reveal that NirD directly binds the catalytic domains of RelA to balance (p)ppGpp accumulation. Finally, we show that NirD can control RelA activity by directly inhibiting the rate of (p)ppGpp synthesis.


Antioxidants ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 13
Author(s):  
Elena Forte ◽  
Sergey A. Siletsky ◽  
Vitaliy B. Borisov

Interaction of two redox enzymes of Escherichia coli, cytochrome bo3 and cytochrome bd-I, with ammonium sulfate/ammonia at pH 7.0 and 8.3 was studied using high-resolution respirometry and absorption spectroscopy. At pH 7.0, the oxygen reductase activity of none of the enzymes is affected by the ligand. At pH 8.3, cytochrome bo3 is inhibited by the ligand, with 40% maximum inhibition at 100 mM (NH4)2SO4. In contrast, the activity of cytochrome bd-I at pH 8.3 increases with increasing the ligand concentration, the largest increase (140%) is observed at 100 mM (NH4)2SO4. In both cases, the effector molecule is apparently not NH4+ but NH3. The ligand induces changes in absorption spectra of both oxidized cytochromes at pH 8.3. The magnitude of these changes increases as ammonia concentration is increased, yielding apparent dissociation constants Kdapp of 24.3 ± 2.7 mM (NH4)2SO4 (4.9 ± 0.5 mM NH3) for the Soret region in cytochrome bo3, and 35.9 ± 7.1 and 24.6 ± 12.4 mM (NH4)2SO4 (7.2 ± 1.4 and 4.9 ± 2.5 mM NH3) for the Soret and visible regions, respectively, in cytochrome bd-I. Consistently, addition of (NH4)2SO4 to cells of the E. coli mutant containing cytochrome bd-I as the only terminal oxidase at pH 8.3 accelerates the O2 consumption rate, the highest one (140%) being at 27 mM (NH4)2SO4. We discuss possible molecular mechanisms and physiological significance of modulation of the enzymatic activities by ammonia present at high concentration in the intestines, a niche occupied by E. coli.


2003 ◽  
Vol 185 (18) ◽  
pp. 5391-5397 ◽  
Author(s):  
Si Jae Park ◽  
Sang Yup Lee

ABSTRACT The biosynthetic pathway of medium-chain-length (MCL) polyhydroxyalkanoates (PHAs) from fatty acids has been established in fadB mutant Escherichia coli strain by expressing the MCL-PHA synthase gene. However, the enzymes that are responsible for the generation of (R)-3-hydroxyacyl coenzyme A (R3HA-CoAs), the substrates for PHA synthase, have not been thoroughly elucidated. Escherichia coli MaoC, which is homologous to Pseudomonas aeruginosa (R)-specific enoyl-CoA hydratase (PhaJ1), was identified and found to be important for PHA biosynthesis in a fadB mutant E. coli strain. When the MCL-PHA synthase gene was introduced, the fadB maoC double-mutant E. coli WB108, which is a derivative of E. coli W3110, accumulated 43% less amount of MCL-PHA from fatty acid compared with the fadB mutant E. coli WB101. The PHA biosynthetic capacity could be restored by plasmid-based expression of the maoCEc gene in E. coli WB108. Also, E. coli W3110 possessing fully functional β-oxidation pathway could produce MCL-PHA from fatty acid by the coexpression of the maoCEc gene and the MCL-PHA synthase gene. For the enzymatic analysis, MaoC fused with His6-Tag at its C-terminal was expressed in E. coli and purified. Enzymatic analysis of tagged MaoC showed that MaoC has enoyl-CoA hydratase activity toward crotonyl-CoA. These results suggest that MaoC is a new enoyl-CoA hydratase involved in supplying (R)-3-hydroxyacyl-CoA from the β-oxidation pathway to PHA biosynthetic pathway in the fadB mutant E. coli strain.


2016 ◽  
Vol 79 (10) ◽  
pp. 1673-1679 ◽  
Author(s):  
ACHYUT ADHIKARI ◽  
ANDY BARY ◽  
CRAIG COGGER ◽  
CALEB JAMES ◽  
GÜLHAN ÜNLÜ ◽  
...  

ABSTRACT Pathogens exposed to agricultural production environments are subject to multiple stresses that may alter their survival under subsequent stress conditions. The objective of this study was to examine heat and starvation stress response of Escherichia coli O157:H7 strains isolated from agricultural matrices. Seven E. coli O157:H7 isolates from different agricultural matrices—soil, compost, irrigation water, and sheep manure—were selected, and two ATCC strains were used as controls. The E. coli O157:H7 isolates were exposed to heat stress (56°C in 0.1% peptone water for up to 1 h) and starvation (in phosphate-buffered saline at 37°C for 15 days), and their survival was examined. GInaFiT freeware tool was used to perform regression analyses of the surviving populations. The Weibull model was identified as the most appropriate model for response of the isolates to heat stress, whereas the biphasic survival curves during starvation were fitted using the double Weibull model, indicating the adaptation to starvation or a resistant subpopulation. The inactivation time during heating to achieve the first decimal reduction time (δ) calculated with the Weibull parameters was the highest (45 min) for a compost isolate (Comp60A) and the lowest (28 min) for ATCC strain 43895. Two of the nine isolates (ATCC 43895 and a manure isolate) had β < 1, indicating that surviving populations adapted to heat stress, and six strains demonstrated downward concavity (β > 1), indicating decreasing heat resistance over time. The ATCC strains displayed the longest δ2 (>1,250 h) in response to starvation stress, compared with from 328 to 812 h for the environmental strains. The considerable variation in inactivation kinetics of E. coli O157:H7 highlights the importance of evaluating response to stress conditions among individual strains of a specific pathogen. Environmental isolates did not exhibit more robust response to stress conditions in this study compared with ATCC strains.


2004 ◽  
Vol 186 (18) ◽  
pp. 6179-6185 ◽  
Author(s):  
Richard A. Lease ◽  
Dorie Smith ◽  
Kathleen McDonough ◽  
Marlene Belfort

ABSTRACT DsrA RNA is a small (87-nucleotide) regulatory RNA of Escherichia coli that acts by RNA-RNA interactions to control translation and turnover of specific mRNAs. Two targets of DsrA regulation are RpoS, the stationary-phase and stress response sigma factor (σs), and H-NS, a histone-like nucleoid protein and global transcription repressor. Genes regulated globally by RpoS and H-NS include stress response proteins and virulence factors for pathogenic E. coli. Here, by using transcription profiling via DNA arrays, we have identified genes induced by DsrA. Steady-state levels of mRNAs from many genes increased with DsrA overproduction, including multiple acid resistance genes of E. coli. Quantitative primer extension analysis verified the induction of individual acid resistance genes in the hdeAB, gadAX, and gadBC operons. E. coli K-12 strains, as well as pathogenic E. coli O157:H7, exhibited compromised acid resistance in dsrA mutants. Conversely, overproduction of DsrA from a plasmid rendered the acid-sensitive dsrA mutant extremely acid resistant. Thus, DsrA RNA plays a regulatory role in acid resistance. Whether DsrA targets acid resistance genes directly by base pairing or indirectly via perturbation of RpoS and/or H-NS is not known, but in either event, our results suggest that DsrA RNA may enhance the virulence of pathogenic E. coli.


1982 ◽  
Vol 152 (1) ◽  
pp. 26-34
Author(s):  
M Leduc ◽  
R Kasra ◽  
J van Heijenoort

Various methods of inducing autolysis of Escherichia coli cells were investigated, some being described here for the first time. For the autolysis of growing cells only induction methods interfering with the biosynthesis of peptidoglycan were taken into consideration, whereas with harvested cells autolysis was induced by rapid osmotic or EDTA shock treatments. The highest rates of autolysis were observed after induction by moenomycin, EDTA, or cephaloridine. The different autolyses examined shared certain common properties. In particular, regardless of the induction method used, more or less extensive peptidoglycan degradation was observed, and 10(-2) M Mg2+ efficiently inhibited the autolytic process. However, for other properties a distinction was made between methods used for growing cells and those used for harvested cells. Autolysis of growing cells required RNA, protein, and fatty acid synthesis. No such requirements were observed with shock-induced autolysis performed with harvested cells. Thus, the effects of Mg2+, rifampicin, chloramphenicol, and cerulenin clearly suggest that distinct factors are involved in the control of the autolytic system of E. Coli. Uncoupling agents such as sodium azide, 2,4-dinitrophenol, and carbonyl-cyanide-m-chlorophenyl hydrazone used at their usual inhibiting concentration had no effect on the cephaloridine or shock-induced autolysis.


2019 ◽  
Vol 7 (11) ◽  
pp. 552 ◽  
Author(s):  
Ziaur Rahman ◽  
Bong Hyun Sung ◽  
Javed Nawab ◽  
Muhammad Faisal Siddiqui ◽  
Abid Ali ◽  
...  

Biodiesel, or fatty acid ethyl ester (FAEE), is an environmentally safe, next-generation biofuel. Conventionally, FAEE is produced by the conversion of oil/fats, obtained from plants, animals, and microorganisms, by transesterification. Recently, metabolic engineering of bacteria for ready-to-use biodiesel was developed. In Escherichia coli, it is produced by fatty acyl-carrier proteins and ethanol, with the help of thioesterase (TesB) and wax synthase (WS) enzymes. One of the foremost barriers in microbial FAEE production is the feedback inhibition of the fatty acid (FA) operon (fabHDG). Here, we studied the effect of biodiesel biosynthesis in E. coli with an engineered fabHDG operon. With a basic FAEE producing BD1 strain harboring tes and ws genes, biodiesel of 32 mg/L were produced. Optimal FAEE biosynthesis was achieved in the BD2 strain that carries an overexpressed operon (fabH, fabD, and fabG genes) and achieved up to 1291 mg/L of biodiesel, a 40-fold rise compared to the BD1 strain. The composition of FAEE obtained from the BD2 strain was 65% (C10:C2, decanoic acid ethyl ester) and 35% (C12:C2, dodecanoic acid ethyl ester). Our findings indicate that overexpression of the native FA operon, along with FAEE biosynthesis enzymes, improved biodiesel biosynthesis in E. coli.


2010 ◽  
Vol 76 (16) ◽  
pp. 5463-5470 ◽  
Author(s):  
Amarjeet Singh ◽  
Anis Karimpour-Fard ◽  
Ryan T. Gill

ABSTRACT Balancing of reducing equivalents is a fundamental issue in bacterial metabolism and metabolic engineering. Mutations in the key metabolic genes ldhA and pflB of Escherichia coli are known to stall anaerobic growth and fermentation due to a buildup of intracellular NADH. We observed that the rate of spontaneous mutation in E. coli BW25113 (ΔldhA ΔpflB) was an order of magnitude higher than that in wild-type (WT) E. coli BW25113. We hypothesized that the increased mutation frequency was due to an increased NADH/NAD+ ratio in this strain. Using several redox-impaired strains of E. coli and different redox conditions, we confirmed a significant correlation (P < 0.01) between intracellular-NADH/NAD+ ratio and mutation frequency. To identify the genetic basis for this relationship, whole-genome transcriptional profiles were compared between BW25113 WT and BW25113 (ΔldhA ΔpflB). This analysis revealed that the genes involved in DNA repair were expressed at significantly lower levels in BW25113 (ΔldhA ΔpflB). Direct measurements of the extent of DNA repair in BW25113 (ΔldhA ΔpflB) subjected to UV exposure confirmed that DNA repair was inhibited. To identify a direct link between DNA repair and intracellular-redox ratio, the stringent-response-regulatory gene relA and the global-stress-response-regulatory gene rpoS were deleted. In both cases, the mutation frequencies were restored to BW25113 WT levels.


Sign in / Sign up

Export Citation Format

Share Document