scholarly journals Electrophysiological engineering of heart-derived cells with calcium-dependent potassium channels improves cell therapy efficacy for cardioprotection

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Patrick Vigneault ◽  
Sandrine Parent ◽  
Pushpinder Kanda ◽  
Connor Michie ◽  
Darryl R. Davis ◽  
...  

AbstractWe have shown that calcium-activated potassium (KCa)-channels regulate fundamental progenitor-cell functions, including proliferation, but their contribution to cell-therapy effectiveness is unknown. Here, we test the participation of KCa-channels in human heart explant-derived cell (EDC) physiology and therapeutic potential. TRAM34-sensitive KCa3.1-channels, encoded by the KCNN4 gene, are exclusively expressed in therapeutically bioactive EDC subfractions and maintain a strongly polarized resting potential; whereas therapeutically inert EDCs lack KCa3.1 channels and exhibit depolarized resting potentials. Somatic gene transfer of KCNN4 results in membrane hyperpolarization and increases intracellular [Ca2+], which boosts cell-proliferation and the production of pro-healing cytokines/nanoparticles. Intramyocardial injection of EDCs after KCNN4-gene overexpression markedly increases the salutary effects of EDCs on cardiac function, viable myocardium and peri-infarct neovascularization in a well-established murine model of ischemic cardiomyopathy. Thus, electrophysiological engineering provides a potentially valuable strategy to improve the therapeutic value of progenitor cells for cardioprotection and possibly other indications.

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Jean Chemin ◽  
Tamara Timic Stamenic ◽  
Magalie Cazade ◽  
Jodie Llinares ◽  
Iulia Blesneac ◽  
...  

Abstract Cav3 / T-type Ca2+ channels are dynamically regulated by intracellular Ca2+ ions, which inhibit Cav3 availability. Here, we demonstrate that this inhibition becomes irreversible in the presence of non-hydrolysable ATP analogs, resulting in a strong hyperpolarizing shift in the steady-state inactivation of the residual Cav3 current. Importantly, the effect of these ATP analogs was prevented in the presence of intracellular BAPTA. Additional findings obtained using intracellular dialysis of inorganic phosphate and alkaline phosphatase or NaN3 treatment further support the involvement of a phosphorylation mechanism. Contrasting with Cav1 and Cav2 Ca2+ channels, the Ca2+-dependent modulation of Cav3 channels appears to be independent of calmodulin, calcineurin and endocytic pathways. Similar findings were obtained for the native T-type Ca2+ current recorded in rat thalamic neurons of the central medial nucleus. Overall, our data reveal a new Ca2+ sensitive phosphorylation-dependent mechanism regulating Cav3 channels, with potentially important physiological implications for the multiple cell functions controlled by T-type Ca2+ channels.


2016 ◽  
Vol 2016 ◽  
pp. 1-16 ◽  
Author(s):  
Maximiliano I. Schaun ◽  
Bruna Eibel ◽  
Melissa Kristocheck ◽  
Grasiele Sausen ◽  
Luana Machado ◽  
...  

The incidence of severe ischemic heart disease caused by coronary obstruction has progressively increased. Alternative forms of treatment have been studied in an attempt to regenerate myocardial tissue, induce angiogenesis, and improve clinical conditions. In this context, cell therapy has emerged as a promising alternative using cells with regenerative potential, focusing on the release of paracrine and autocrine factors that contribute to cell survival, angiogenesis, and tissue remodeling. Evidence of the safety, feasibility, and potential effectiveness of cell therapy has emerged from several clinical trials using different lineages of adult stem cells. The clinical benefit, however, is not yet well established. In this review, we discuss the therapeutic potential of cell therapy in terms of regenerative and angiogenic capacity after myocardial ischemia. In addition, we addressed nonpharmacological interventions that may influence this therapeutic practice, such as diet and physical training. This review brings together current data on pharmacological and nonpharmacological approaches to improve cell homing and cardiac repair.


2003 ◽  
Vol 13 (12) ◽  
pp. 3873-3886
Author(s):  
O. V. ASLANIDI ◽  
A. V. HOLDEN

A simple two-variable model is used to replace the formulation of calcium dynamics in the Luo–Rudy ventricular cell model. Virtual ventricular cell and tissue are developed and validated to reproduce restitution properties and calcium-dependent voltage patterns present in the original model. Basic interactions between the membrane potential and Ca 2+ dynamics in the virtual cell and a strand of the virtual tissue are studied. Intracellular calcium waves can be linked to both action potentials (APs) and delayed afterdepolarizations (DADs). An intracellular calcium wave propagating from the cell interior can induce an AP upon reaching the cell membrane. The voltage and the intracellular Ca 2+ patterns within the same cell can be highly desynchronized. In a one-dimensional strand of the virtual tissue calcium motion is driven by the AP propagation. However, calcium release can be induced upon certain conditions (e.g. Na + overload of the cells), which results in DADs propagating in the wake of AP. Such propagating DADs can reach the excitation threshold, generating a pair of extrasystolic APs. Collision of a propagating AP with a site of elevated intracellular Ca 2+ concentration does not affect the propagation under the normal conditions. Under Na + overload local elevation of the intracellular Ca 2+ leads to generation of an extrasystolic AP, which destroys the original propagating AP.


1985 ◽  
Vol 224 (1235) ◽  
pp. 183-196 ◽  

The distribution and single channel properties of acetylcholine (ACh) receptors in human myotubes grown in tissue culture have been examined. Radioautography of myotubes labelled with [ 125 I]α-bungarotoxin showed that ACh receptors are distributed uniformly over the myotube surface at a density of 3.9 ± 0.5 receptors per square micrometre. Ac­cumulations of ACh receptors (hot spots) were found rarely. The conductance and kinetics of ACh-activated channels were investi­gated with the patch-clamp technique. Cell-attached membrane patches were used in all experiments. A single channel conductance in the range 40–45 pS was calculated. No sublevels of conductance (substates) of the activated channel were observed. The distribution of channel open-times varied with ACh concentration. With 100 nM ACh, the distribution was best fitted by the sum of two exponentials, whereas with 1 μM ACh a single exponential could be fitted. The mean channel open-time at the myotube resting potential (ca. — 70 mV, 22°C) was 8.2 ms. The distribution of channel closed-times was complex at all concentrations of ACh studied (100 nM to 10 μm). With desensitizing doses of ACh (10 μM), channel openings occurred in obvious bursts; each burst usually appeared as part of a ‘cluster’ of bursts. Both burst duration and mean interval between bursts increased with membrane hyperpolarization. Individual channel open-times and burst durations showed similar voltage dependence (e-fold increase per 80 mV hyperpolarization), whereas both the channel closed-times within a burst and the number of openings per burst were independent of membrane potential.


1995 ◽  
Vol 15 (11) ◽  
pp. 6160-6168 ◽  
Author(s):  
I E Zohn ◽  
H Yu ◽  
X Li ◽  
A D Cox ◽  
H S Earp

In GN4 rat liver epithelial cells, angiotensin II (Ang II) and other agonists which activate phospholipase C stimulate tyrosine kinase activity in a calcium-dependent, protein kinase C (PKC)-independent manner. Since Ang II also produces a proliferative response in these cells, we investigated downstream signaling elements traditionally linked to growth control by tyrosine kinases. First, Ang II, like epidermal growth factor (EGF), stimulated AP-1 binding activity in a PKC-independent manner. Because increases in AP-1 can reflect induction of c-Jun and c-Fos, we examined the activity of the mitogen-activated protein (MAP) kinase family members Erk-1 and -2 and the c-Jun N-terminal kinase (JNK), which are known to influence c-Jun and c-Fos transcription. Ang II stimulated MAP kinase (MAPK) activity but only approximately 50% as effectively as EGF; again, these effects were independent of PKC. Ang II also produced a 50- to 200-fold activation of JNK in a PKC-independent manner. Unlike its smaller effect on MAPK, Ang II was approximately four- to sixfold more potent in activating JNK than EGF was. Although others had reported a lack of calcium ionophore-stimulated JNK activity in lymphocytes and several other cell lines, we examined the role of calcium in GN4 cells. The following results suggest that JNK activation in rat liver epithelial cells is at least partially Ca(2+) dependent: (i) norepinephrine and vasopressin hormones that increase inositol 1,4,5-triphosphate stimulated JNK; (ii) both thapsigargin, a compound that produces an intracellular Ca(2+) signal, and Ca(2+) ionophores stimulated a dramatic increase in JNK activity (up to 200-fold); (iii) extracellular Ca(2+) chelation with ethylene glycol tetraacetic acid (EGTA) inhibited JNK activation by ionophore and intracellular chelation with 1,2-bis-(o-aminophenoxy)-ethane-N,N,N',N'-tetraacetic acid tetraacetoxymethyl-ester (BAPTA-AM) partially inhibited JNK activation by Ang II or thapsigargin; and (iv) JNK activation by Ang II was inhibited by pretreatment of cells with thapsigargin and EGTA, a procedure which depletes intracellular Ca(2+) stores. JNK activation following Ang II stimulation did not involve calmodulin; either W-7 nor calmidizolium, in concentrations sufficient to inhibit Ca(2+)/calmodulin-dependent kinase II, blocked JNK activation by Ang II. In contrast, genistein, in concentrations sufficient to inhibit Ca(2+)-dependent tyrosine phosphorylation, prevented Ang II and thapsigargin-induced JNK activation. In summary, in GN4 rat liver epithelial cells, Ang II stimulates JNK via a novel Ca(2+)-dependent pathway. The inhibition by genistein suggest that Ca(2+)-dependent tyrosine phosphorylation may modulate the JNK pathway in a cell type-specific manner, particularly in cells with a readily detectable Ca(2+)-regulated tyrosine kinase.


2021 ◽  
Vol 5 (4) ◽  
pp. 195-221
Author(s):  
Katarzyna Nazimek ◽  

<abstract> <p>At present, special efforts are being made to develop the strategies allowing for activation of long-lasting antigen-specific immune tolerance in therapy of allergic and autoimmune diseases. Some of these therapeutic approaches are aimed at modulating cell functions at genetic level by using miRNA-based and miRNA-targeting treatments. Simultaneously, the crucial role of extracellular vesicles as natural miRNA conveyors is highlighted for induction of antigen-specific immune tolerance, especially that they appear to be easily manipulatable for therapeutic applications. Among other immune-related miRNAs, miR-150 is getting special attention as it is differently expressed by immune cells at various stages of their maturation and differentiation. In addition, miR-150 is involved in different signaling cascades orchestrating humoral and cell-mediated mechanisms of both innate and adaptive immune responses. Therefore, miR-150 is considered a master regulator of immunity in mammals. Currently, physiological miR-150-dependent regulatory circuits and causes of their malfunctioning that underlie the pathogenesis of allergic and autoimmune disorders are being unraveled. Thus, present review summarizes the current knowledge of the role of miR-150 in the pathogenesis and complications of these diseases. Furthermore, the involvement of miR-150 in regulation of immune responses to allergens and self-antigens and in induction of antigen-specific immune tolerance is discussed with the special emphasis on the therapeutic potential of this miRNA.</p> </abstract>


Author(s):  
Johan Verhagen ◽  
Edith Van der Meijden ◽  
Vanessa Lang ◽  
Andreas Kremer ◽  
Simon Völkl ◽  
...  

Since December 2019, Coronavirus disease-19 (COVID-19) has spread rapidly across the world, leading to a global effort to develop vaccines and treatments. Despite extensive progress, there remains a need for treatments to bolster the immune responses in infected immunocompromised individuals, such as cancer patients who recently underwent a haematopoietic stem cell transplantation. Immunological protection against COVID-19 is mediated by both short-lived neutralising antibodies and long-lasting virus-reactive T cells. Therefore, we propose that T cell therapy may augment efficacy of current treatments. For the greatest efficacy with minimal adverse effects, it is important that any cellular therapy is designed to be as specific and directed as possible. Here, we identify T cells from COVID-19 patients with a potentially protective response to two major antigens of the SARS-CoV-2 virus, Spike and Nucleocapsid protein. By generating clones of highly virus-reactive CD4+ T cells, we were able to confirm a set of 9 immunodominant epitopes and characterise T cell responses against these. Accordingly, the sensitivity of T cell clones for their specific epitope, as well as the extent and focus of their cytokine response was examined. Moreover, by using an advanced T cell receptor (TCR) sequencing approach, we determined the paired TCR sequences of clones of interest. While these data on a limited population require further expansion for universal application, the results presented here form a crucial first step towards TCR-transgenic CD4+ T cell therapy of COVID-19.


Sign in / Sign up

Export Citation Format

Share Document