scholarly journals Conserved and species-specific chromatin remodeling and regulatory dynamics during mouse and chicken limb bud development

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Shalu Jhanwar ◽  
Jonas Malkmus ◽  
Jens Stolte ◽  
Olga Romashkina ◽  
Aimée Zuniga ◽  
...  

AbstractChromatin remodeling and genomic alterations impact spatio-temporal regulation of gene expression, which is central to embryonic development. The analysis of mouse and chicken limb development provides important insights into the morphoregulatory mechanisms, however little is known about the regulatory differences underlying their morphological divergence. Here, we identify the underlying shared and species-specific epigenomic and genomic variations. In mouse forelimb buds, we observe striking synchrony between the temporal dynamics of chromatin accessibility and gene expression, while their divergence in chicken wing buds uncovers species-specific regulatory heterochrony. In silico mapping of transcription factor binding sites and computational footprinting establishes the developmental time-restricted transcription factor-DNA interactions. Finally, the construction of target gene networks for HAND2 and GLI3 transcriptional regulators reveals both conserved and species-specific interactions. Our analysis reveals the impact of genome evolution on the regulatory interactions orchestrating vertebrate limb bud morphogenesis and provides a molecular framework for comparative Evo-Devo studies.

Development ◽  
1999 ◽  
Vol 126 (2) ◽  
pp. 221-228 ◽  
Author(s):  
A.S. Tucker ◽  
A. Al Khamis ◽  
C.A. Ferguson ◽  
I. Bach ◽  
M.G. Rosenfeld ◽  
...  

Clim-2 (NLI, Lbd1) is one of two related mouse proteins that interact with Lim-domain homeoproteins. In the mouse, embryonic expression of Clim-2 is particularly pronounced in facial ectomesenchyme and limb bud mesenchyme in association with Lim genes, Lhx-6 and Lmx-1 respectively. We show that in common with both these Lim genes, Clim-2 expression is regulated by signals from overlying epithelium. In both the developing face and the limb buds we identify Fgf-8 as the likely candidate signalling molecule that regulates Clim-2 expression. We show that in the mandibular arch, as in the limb, Fgf-8 functions in combination with CD44, a cell surface binding protein, and that blocking CD44 binding results in inhibition of Fgf8-induced expression of Clim-2 and Lhx-6. Regulation of gene expression by Fgf8 in association with CD44 is thus conserved between limb and mandibular arch development.


2020 ◽  
Vol 117 (48) ◽  
pp. 30639-30648
Author(s):  
Dan Hu ◽  
Emily C. Tjon ◽  
Karin M. Andersson ◽  
Gabriela M. Molica ◽  
Minh C. Pham ◽  
...  

IL-17–producing Th17 cells are implicated in the pathogenesis of rheumatoid arthritis (RA) and TNF-α, a proinflammatory cytokine in the rheumatoid joint, facilitates Th17 differentiation. Anti-TNF therapy ameliorates disease in many patients with rheumatoid arthritis (RA). However, a significant proportion of patients do not respond to this therapy. The impact of anti-TNF therapy on Th17 responses in RA is not well understood. We conducted high-throughput gene expression analysis of Th17-enriched CCR6+CXCR3−CD45RA−CD4+T (CCR6+T) cells isolated from anti-TNF–treated RA patients classified as responders or nonresponders to therapy. CCR6+T cells from responders and nonresponders had distinct gene expression profiles. Proinflammatory signaling was elevated in the CCR6+T cells of nonresponders, and pathogenic Th17 signature genes were up-regulated in these cells. Gene set enrichment analysis on these signature genes identified transcription factor USF2 as their upstream regulator, which was also increased in nonresponders. Importantly, short hairpin RNA targetingUSF2in pathogenic Th17 cells led to reduced expression of proinflammatory cytokines IL-17A, IFN-γ, IL-22, and granulocyte-macrophage colony-stimulating factor (GM-CSF) as well as transcription factor T-bet. Together, our results revealed inadequate suppression of Th17 responses by anti-TNF in nonresponders, and direct targeting of the USF2-signaling pathway may be a potential therapeutic approach in the anti-TNF refractory RA.


Genome ◽  
2020 ◽  
pp. 1-11
Author(s):  
Bahar Patlar ◽  
Alberto Civetta

It has long been acknowledged that changes in the regulation of gene expression may account for major organismal differences. However, we still do not fully understand how changes in gene expression evolve and how do such changes influence organisms’ differences. We are even less aware of the impact such changes might have in restricting gene flow between species. Here, we focus on studies of gene expression and speciation in the Drosophila model. We review studies that have identified gene interactions in post-mating reproductive isolation and speciation, particularly those that modulate male gene expression. We also address studies that have experimentally manipulated changes in gene expression to test their effect in post-mating reproductive isolation. We highlight the need for a more in-depth analysis of the role of selection causing disrupted gene expression of such candidate genes in sterile/inviable hybrids. Moreover, we discuss the relevance to incorporate more routinely assays that simultaneously evaluate the potential effects of environmental factors and genetic background in modulating plastic responses in male genes and their potential role in speciation.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Neel Patel ◽  
William S. Bush

Abstract Background Transcriptional regulation is complex, requiring multiple cis (local) and trans acting mechanisms working in concert to drive gene expression, with disruption of these processes linked to multiple diseases. Previous computational attempts to understand the influence of regulatory mechanisms on gene expression have used prediction models containing input features derived from cis regulatory factors. However, local chromatin looping and trans-acting mechanisms are known to also influence transcriptional regulation, and their inclusion may improve model accuracy and interpretation. In this study, we create a general model of transcription factor influence on gene expression by incorporating both cis and trans gene regulatory features. Results We describe a computational framework to model gene expression for GM12878 and K562 cell lines. This framework weights the impact of transcription factor-based regulatory data using multi-omics gene regulatory networks to account for both cis and trans acting mechanisms, and measures of the local chromatin context. These prediction models perform significantly better compared to models containing cis-regulatory features alone. Models that additionally integrate long distance chromatin interactions (or chromatin looping) between distal transcription factor binding regions and gene promoters also show improved accuracy. As a demonstration of their utility, effect estimates from these models were used to weight cis-regulatory rare variants for sequence kernel association test analyses of gene expression. Conclusions Our models generate refined effect estimates for the influence of individual transcription factors on gene expression, allowing characterization of their roles across the genome. This work also provides a framework for integrating multiple data types into a single model of transcriptional regulation.


Development ◽  
1999 ◽  
Vol 126 (21) ◽  
pp. 4729-4736
Author(s):  
L. Lettice ◽  
J. Hecksher-Sorensen ◽  
R.E. Hill

Epithelial-mesenchymal interactions are essential for both limb outgrowth and pattern formation in the limb. Molecules capable of communication between these two tissues are known and include the signaling molecules SHH and FGF4, FGF8 and FGF10. Evidence suggests that the pattern and maintenance of expression of these genes are dependent on a number of factors including regulatory loops between genes expressed in the AER and those in the underlying mesenchyme. We show here that the mouse mutation dominant hemimelia (Dh) alters the pattern of gene expression in the AER such that Fgf4, which is normally expressed in a posterior domain, and Fgf8, which is expressed throughout are expressed in anterior patterns. We show that maintenance of Shh expression in the posterior mesenchyme is not dependent on either expression of Fgf4 or normal levels of Fgf8 in the overlying AER. Conversely, AER expression of Fgf4 is not directly dependent on Shh expression. Also the reciprocal regulatory loop proposed for Fgf8 in the AER and Fgf10 in the underlying mesenchyme is also uncoupled by this mutation. Early during the process of limb initiation, Dh is involved in regulating the width of the limb bud, the mutation resulting in selective loss of anterior mesenchyme. The Dh gene functions in the initial stages of limb development and we suggest that these initial roles are linked to mechanisms that pattern gene expression in the AER.


Development ◽  
1998 ◽  
Vol 125 (3) ◽  
pp. 351-357 ◽  
Author(s):  
C. Hayes ◽  
J.M. Brown ◽  
M.F. Lyon ◽  
G.M. Morriss-Kay

The mouse mutant Doublefoot (Dbf) shows preaxial polydactyly of all four limbs. We have analysed limb development in this mutant with respect to morphogenesis, gene expression patterns and ectopic polarising activity. The results reveal a gain-of-function mutation at a locus that mediates pattern formation in the developing limb. Shh expression is identical with that of wild-type embryos, i.e. there is no ectopic expression. However, mesenchyme from the anterior aspects of Dbf/+ mutant limb buds, when transplanted to the anterior side of chick wing buds, induces duplication of the distal skeletal elements. Mid-distal mesenchymal transplants from early, but not later, Dbf/+ limb buds are also able to induce duplication. This demonstration of polarising activity in the absence of Shh expression identifies the gene at the Dbf locus as a new genetic component of the Shh signalling pathway, which (at least in its mutated form) is able to activate signal transduction independently of Shh. The mutant gene product is sufficient to fulfil the signalling properties of Shh including upregulation of the direct Shh target genes Ptc and Gli, and induction of the downstream target genes Bmp2, Fgf4 and Hoxd13. The expression domains of all these genes extend from their normal posterior domains into the anterior part of the limb bud without being focused on a discrete ectopic site. These observations dissociate polarising activity from Shh gene expression in the Dbf/+ limb bud. We suggest that the product of the normal Dbf gene is a key active constituent of the polarising region, possibly acting in the extracellular compartment.


2020 ◽  
Vol 21 (18) ◽  
pp. 6816
Author(s):  
Alberto J. López ◽  
Julia K. Hecking ◽  
André O. White

Long-term memory formation requires coordinated regulation of gene expression and persistent changes in cell function. For decades, research has implicated histone modifications in regulating chromatin compaction necessary for experience-dependent changes to gene expression and cell function during memory formation. Recent evidence suggests that another epigenetic mechanism, ATP-dependent chromatin remodeling, works in concert with the histone-modifying enzymes to produce large-scale changes to chromatin structure. This review examines how histone-modifying enzymes and chromatin remodelers restructure chromatin to facilitate memory formation. We highlight the emerging evidence implicating ATP-dependent chromatin remodeling as an essential mechanism that mediates activity-dependent gene expression, plasticity, and cell function in developing and adult brains. Finally, we discuss how studies that target chromatin remodelers have expanded our understanding of the role that these complexes play in substance use disorders.


2019 ◽  
Vol 116 (20) ◽  
pp. 9893-9902 ◽  
Author(s):  
Christopher M. Uyehara ◽  
Daniel J. McKay

The ecdysone pathway was among the first experimental systems employed to study the impact of steroid hormones on the genome. In Drosophila and other insects, ecdysone coordinates developmental transitions, including wholesale transformation of the larva into the adult during metamorphosis. Like other hormones, ecdysone controls gene expression through a nuclear receptor, which functions as a ligand-dependent transcription factor. Although it is clear that ecdysone elicits distinct transcriptional responses within its different target tissues, the role of its receptor, EcR, in regulating target gene expression is incompletely understood. In particular, EcR initiates a cascade of transcription factor expression in response to ecdysone, making it unclear which ecdysone-responsive genes are direct EcR targets. Here, we use the larval-to-prepupal transition of developing wings to examine the role of EcR in gene regulation. Genome-wide DNA binding profiles reveal that EcR exhibits widespread binding across the genome, including at many canonical ecdysone response genes. However, the majority of its binding sites reside at genes with wing-specific functions. We also find that EcR binding is temporally dynamic, with thousands of binding sites changing over time. RNA-seq reveals that EcR acts as both a temporal gate to block precocious entry to the next developmental stage as well as a temporal trigger to promote the subsequent program. Finally, transgenic reporter analysis indicates that EcR regulates not only temporal changes in target enhancer activity but also spatial patterns. Together, these studies define EcR as a multipurpose, direct regulator of gene expression, greatly expanding its role in coordinating developmental transitions.


2020 ◽  
Vol 21 (21) ◽  
pp. 8317
Author(s):  
Rebekah R. Starks ◽  
Rabab Abu Alhasan ◽  
Haninder Kaur ◽  
Kathleen A. Pennington ◽  
Laura C. Schulz ◽  
...  

During pregnancy, the placenta is important for transporting nutrients and waste between the maternal and fetal blood supply, secreting hormones, and serving as a protective barrier. To better understand placental development, we must understand how placental gene expression is regulated. We used RNA-seq data and ChIP-seq data for the enhancer associated mark, H3k27ac, to study gene regulation in the mouse placenta at embryonic day (e) 9.5, when the placenta is developing a complex network of blood vessels. We identified several upregulated transcription factors with enriched binding sites in e9.5-specific enhancers. The most enriched transcription factor, PLAGL1 had a predicted motif in 233 regions that were significantly associated with vasculature development and response to insulin stimulus genes. We then performed several experiments using mouse placenta and a human trophoblast cell line to understand the role of PLAGL1 in placental development. In the mouse placenta, Plagl1 is expressed in endothelial cells of the labyrinth layer and is differentially expressed in placentas from mice with gestational diabetes compared to placentas from control mice in a sex-specific manner. In human trophoblast cells, siRNA knockdown significantly decreased expression of genes associated with placental vasculature development terms. In a tube assay, decreased PLAGL1 expression led to reduced cord formation. These results suggest that Plagl1 regulates overlapping gene networks in placental trophoblast and endothelial cells, and may play a critical role in placental development in normal and complicated pregnancies.


Sign in / Sign up

Export Citation Format

Share Document