scholarly journals Constitutive activation of the PI3K-Akt-mTORC1 pathway sustains the m.3243 A > G mtDNA mutation

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Chih-Yao Chung ◽  
Kritarth Singh ◽  
Vassilios N. Kotiadis ◽  
Gabriel E. Valdebenito ◽  
Jee Hwan Ahn ◽  
...  

AbstractMutations of the mitochondrial genome (mtDNA) cause a range of profoundly debilitating clinical conditions for which treatment options are very limited. Most mtDNA diseases show heteroplasmy – tissues express both wild-type and mutant mtDNA. While the level of heteroplasmy broadly correlates with disease severity, the relationships between specific mtDNA mutations, heteroplasmy, disease phenotype and severity are poorly understood. We have carried out extensive bioenergetic, metabolomic and RNAseq studies on heteroplasmic patient-derived cells carrying the most prevalent disease related mtDNA mutation, the m.3243 A > G. These studies reveal that the mutation promotes changes in metabolites which are associated with the upregulation of the PI3K-Akt-mTORC1 axis in patient-derived cells and tissues. Remarkably, pharmacological inhibition of PI3K, Akt, or mTORC1 reduced mtDNA mutant load and partially rescued cellular bioenergetic function. The PI3K-Akt-mTORC1 axis thus represents a potential therapeutic target that may benefit people suffering from the consequences of the m.3243 A > G mutation.

2020 ◽  
Author(s):  
Chih-Yao Chung ◽  
Kritarth Singh ◽  
Vassilios N Kotiadis ◽  
Jee Hwan Ahn ◽  
Lida Kabir ◽  
...  

ABSTRACTMutations of the mitochondrial genome (mtDNA) cause a range of profoundly debilitating clinical conditions for which treatment options are limited. Most mtDNA diseases show heteroplasmy - tissues express both wild-type and mutant mtDNA. The relationships between specific mtDNA mutations, heteroplasmy, disease phenotype and severity are poorly understood. We have extensively characterised changes in bioenergetic, metabolomic, lipidomic and RNAseq profiles in heteroplasmic patient-derived cells carrying the m.3243A>G mtDNA mutation, the cause of mitochondrial encephalomyopathy, lactic acidosis and stroke-like episodes (MELAS). These studies reveal that the mutation promotes upregulation of the PI3K-Akt-mTORC1 axis in patient-derived cells and tissues. Remarkably, pharmacological inhibition of PI3K, Akt, or mTORC1 activated mitophagy, reduced mtDNA mutant load and rescued cellular bioenergetics cell-autonomously. The rescue was prevented by inhibition of mitophagy. These findings suggest that activation of the PI3K-Akt-mTORC1 axis is maladaptive and represents a potential therapeutic target for people suffering from the consequences of the m.3243A>G mutation.


2019 ◽  
Vol 5 (4) ◽  
pp. eaav9824 ◽  
Author(s):  
R. Filograna ◽  
C. Koolmeister ◽  
M. Upadhyay ◽  
A. Pajak ◽  
P. Clemente ◽  
...  

Heteroplasmic mtDNA mutations typically act in a recessive way and cause mitochondrial disease only if present above a certain threshold level. We have experimentally investigated to what extent the absolute levels of wild-type (WT) mtDNA influence disease manifestations by manipulating TFAM levels in mice with a heteroplasmic mtDNA mutation in the tRNAAla gene. Increase of total mtDNA levels ameliorated pathology in multiple tissues, although the levels of heteroplasmy remained the same. A reduction in mtDNA levels worsened the phenotype in postmitotic tissues, such as heart, whereas there was an unexpected beneficial effect in rapidly proliferating tissues, such as colon, because of enhanced clonal expansion and selective elimination of mutated mtDNA. The absolute levels of WT mtDNA are thus an important determinant of the pathological manifestations, suggesting that pharmacological or gene therapy approaches to selectively increase mtDNA copy number provide a potential treatment strategy for human mtDNA mutation disease.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Kendra D. Maclaine ◽  
Kevin A. Stebbings ◽  
Daniel A. Llano ◽  
Justin C. Havird

Abstract Background Mitochondrial DNA (mtDNA) codes for products necessary for electron transport and mitochondrial gene translation. mtDNA mutations can lead to human disease and influence organismal fitness. The PolG mutator mouse lacks mtDNA proofreading function and rapidly accumulates mtDNA mutations, making it a model for examining the causes and consequences of mitochondrial mutations. Premature aging in PolG mice and their physiology have been examined in depth, but the location, frequency, and diversity of their mtDNA mutations remain understudied. Identifying the locations and spectra of mtDNA mutations in PolG mice can shed light on how selection shapes mtDNA, both within and across organisms. Results Here, we characterized somatic and germline mtDNA mutations in brain and liver tissue of PolG mice to quantify mutation count (number of unique mutations) and frequency (mutation prevalence). Overall, mtDNA mutation count and frequency were the lowest in the D-loop, where an mtDNA origin of replication is located, but otherwise uniform across the mitochondrial genome. Somatic mtDNA mutations have a higher mutation count than germline mutations. However, germline mutations maintain a higher frequency and were also more likely to be silent. Cytosine to thymine mutations characteristic of replication errors were the plurality of basepair changes, and missense C to T mutations primarily resulted in increased protein hydrophobicity. Unlike wild type mice, PolG mice do not appear to show strand asymmetry in mtDNA mutations. Indel mutations had a lower count and frequency than point mutations and tended to be short, frameshift deletions. Conclusions Our results provide strong evidence that purifying selection plays a major role in the mtDNA of PolG mice. Missense mutations were less likely to be passed down in the germline, and they were less likely to spread to high frequencies. The D-loop appears to have resistance to mutations, either through selection or as a by-product of replication processes. Missense mutations that decrease hydrophobicity also tend to be selected against, reflecting the membrane-bound nature of mtDNA-encoded proteins. The abundance of mutations from polymerase errors compared with reactive oxygen species (ROS) damage supports previous studies suggesting ROS plays a minimal role in exacerbating the PolG phenotype, but our findings on strand asymmetry provide discussion for the role of polymerase errors in wild type organisms. Our results provide further insight on how selection shapes mtDNA mutations and on the aging mechanisms in PolG mice.


Oncogene ◽  
2021 ◽  
Author(s):  
Shuang Qiao ◽  
Wenhua Lu ◽  
Christophe Glorieux ◽  
Jiangjiang Li ◽  
Peiting Zeng ◽  
...  

2002 ◽  
Vol 36 (3) ◽  
pp. 489-503 ◽  
Author(s):  
William E Dager ◽  
Richard H White

OBJECTIVE: To describe heparin-induced thrombocytopenia (HIT or HIT-2), an immune-mediated adverse reaction to heparin or low-molecular-weight heparin. Available treatment options and considerations in developing a therapy approach are discussed. DATA SOURCES: A search of the National Library of Medicine (1992–June 2001) was done to identify pertinent literature. Additional references were reviewed from selected articles. STUDY SELECTION: Articles related to laboratory recognition and treatment options of HIT, including the use of agents in selected clinical conditions, were reviewed and included. CONCLUSIONS: HIT is a rare but potentially severe adverse reaction to heparin that was, until recently, poorly understood and had limited treatment options. Recent advances describing the recognition and clinical manifestations of immune-mediated HIT, including recently available antithrombotic treatment options, have dramatically changed outcomes for patients having this syndrome.


Circulation ◽  
2020 ◽  
Vol 142 (Suppl_3) ◽  
Author(s):  
Pappu Ananya ◽  
Michael Binder ◽  
Yang Wanjun ◽  
Rebecca McClellan ◽  
Brittney Murray ◽  
...  

Introduction: Mitochondrial heart disease due to pathogenic mitochondrial DNA (mtDNA) mutations can present as hypertrophic or dilated cardiomyopathy, ventricular arrhythmias and conduction disease. It is estimated that the mutation rate of mtDNA is 10 to 20-fold higher than that of nuclear DNA genes due to damage from reactive oxygen species released as byproducts during oxidative phosphorylation. When a new mtDNA mutation arises, it creates an intracellular heteroplasmic mixture of mutant and normal mtDNAs, called heteroplasmy. Heteroplasmy levels can vary in various tissues and examining mtDNA variants in blood may not be representative for the heart. The frequency of pathogenic mtDNA variants in myocardial tissues in unknown. Hypothesis: Human ventricular tissue may contain mtDNA mutations which can lead to alterations in mitochondrial function and increase individual risk for heart failure. Methods: Mitochondrial DNA was isolated from 61 left ventricular myocardial samples obtained from failing human hearts at the time of transplantation. mtDNA was sequenced with 23 primer pairs. In silico prediction of non-conservative missense variants was performed via PolyPhen-2. Heteroplasmy levels of variants predicted to be pathogenic were quantified using allele-specific ARMS-PCR. Results: We identified 21 mtDNA non-synonymous variants predicted to be pathogenic in 17 hearts. Notably, one heart contained four pathogenic mtDNA variants (ATP6: p.M104; ND5: p.P265S; ND4: p.N390S and p.L445F). Heteroplasmy levels exceeded 90% for all four variants in myocardial tissue and were significantly lower in blood. No pathogenic mtDNA variants were identified in 44 hearts. Hearts with mtDNA mutations had higher levels of myocardial GDF-15 (growth differentiation factor-15; 6.2±2.3 vs. 1.3±0.18, p=0.045), an established serum biomarker in various mitochondrial diseases. Conclusions: Non-synonymous mtDNA variants predicted to be pathogenic are common in human left ventricular tissue and may be an important modifier of the heart failure phenotype. Future studies are necessary to correlate myocardial mtDNA mutations with cardiovascular outcomes and to assess whether serum GDF-15 allows identifying patients with myocardial mtDNA mutations.


Cancers ◽  
2018 ◽  
Vol 10 (10) ◽  
pp. 375 ◽  
Author(s):  
Henry McCann ◽  
Charlotte Johnson ◽  
Rachel Errington ◽  
D. Davies ◽  
Elaine Dunlop ◽  
...  

To find new anti-cancer drug therapies, we wanted to exploit homeostatic vulnerabilities within Tuberous Sclerosis Complex 2 (TSC2)-deficient cells with mechanistic target of rapamycin complex 1 (mTORC1) hyperactivity. We show that nelfinavir and mefloquine synergize to selectively evoke a cytotoxic response in TSC2-deficient cell lines with mTORC1 hyperactivity. We optimize the concentrations of nelfinavir and mefloquine to a clinically viable range that kill cells that lack TSC2, while wild-type cells tolerate treatment. This new clinically viable drug combination causes a significant level of cell death in TSC2-deficient tumor spheroids. Furthermore, no cell recovery was apparent after drug withdrawal, revealing potent cytotoxicity. Transcriptional profiling by RNA sequencing of drug treated TSC2-deficient cells compared to wild-type cells suggested the cytotoxic mechanism of action, involving initial ER stress and an imbalance in energy homeostatic pathways. Further characterization revealed that supplementation with methyl pyruvate alleviated energy stress and reduced the cytotoxic effect, implicating energy deprivation as the trigger of cell death. This work underpins a critical vulnerability with cancer cells with aberrant signaling through the TSC2-mTORC1 pathway that lack flexibility in homeostatic pathways, which could be exploited with combined nelfinavir and mefloquine treatment.


2021 ◽  
Vol 118 (21) ◽  
pp. e2016904118
Author(s):  
Derek K. Cheng ◽  
Tobiloba E. Oni ◽  
Jennifer S. Thalappillil ◽  
Youngkyu Park ◽  
Hsiu-Chi Ting ◽  
...  

Pancreatic ductal adenocarcinoma (PDAC) is a lethal malignancy with limited treatment options. Although activating mutations of the KRAS GTPase are the predominant dependency present in >90% of PDAC patients, targeting KRAS mutants directly has been challenging in PDAC. Similarly, strategies targeting known KRAS downstream effectors have had limited clinical success due to feedback mechanisms, alternate pathways, and dose-limiting toxicities in normal tissues. Therefore, identifying additional functionally relevant KRAS interactions in PDAC may allow for a better understanding of feedback mechanisms and unveil potential therapeutic targets. Here, we used proximity labeling to identify protein interactors of active KRAS in PDAC cells. We expressed fusions of wild-type (WT) (BirA-KRAS4B), mutant (BirA-KRAS4BG12D), and nontransforming cytosolic double mutant (BirA-KRAS4BG12D/C185S) KRAS with the BirA biotin ligase in murine PDAC cells. Mass spectrometry analysis revealed that RSK1 selectively interacts with membrane-bound KRASG12D, and we demonstrate that this interaction requires NF1 and SPRED2. We find that membrane RSK1 mediates negative feedback on WT RAS signaling and impedes the proliferation of pancreatic cancer cells upon the ablation of mutant KRAS. Our findings link NF1 to the membrane-localized functions of RSK1 and highlight a role for WT RAS signaling in promoting adaptive resistance to mutant KRAS-specific inhibitors in PDAC.


2019 ◽  
Author(s):  
Ryan K Fritts ◽  
Jordan T Bird ◽  
Megan G Behringer ◽  
Anna Lipzen ◽  
Joel Martin ◽  
...  

ABSTRACTInteractive microbial communities are ubiquitous, influencing biogeochemical cycles and host health. One widespread interaction is nutrient exchange, or cross-feeding, wherein metabolites are transferred between microbes. Some cross-fed metabolites, such as vitamins, amino acids, and ammonium (NH4+), are communally valuable and impose a cost on the producer. The mechanisms that enforce cross-feeding of communally valuable metabolites are not fully understood. Previously we engineered mutualistic cross-feeding between N2-fixing Rhodopseudomonas palustris and fermentative Escherichia coli. Engineered R. palustris excreted essential nitrogen as NH4+ to E. coli while E. coli excreted essential carbon as fermentation products to R. palustris. Here, we enriched for nascent cross-feeding in cocultures with wild-type R. palustris, not known to excrete NH4+. Emergent NH4+ cross-feeding was driven by adaptation of E. coli alone. A missense mutation in E. coli NtrC, a regulator of nitrogen scavenging, resulted in constitutive activation of an NH4+ transporter. This activity likely allowed E. coli to subsist on the small amount of leaked NH4+ and better reciprocate through elevated excretion of organic acids from a larger E. coli population. Our results indicate that enhanced nutrient uptake by recipients, rather than increased excretion by producers, is an underappreciated yet possibly prevalent mechanism by which cross-feeding can emerge.


2018 ◽  
Vol 9 (1) ◽  
pp. 26-32
Author(s):  
Duo Chen ◽  
Zhao-Bo Nie ◽  
Zhi-Hong Chi ◽  
Zhan-You Wang ◽  
Xiang-Tai Wei ◽  
...  

Abstract Background The pathophysiology of early brain injury (EBI) after subarachnoid hemorrhage (SAH) is poorly understood. The present study evaluates the influence of zinc transporter 3 (ZnT3) knockout and the depletion of vesicular zinc on EBI. Methodology SAH was induced in ZnT3 KO mice by internal carotid artery perforation. The changes in behavior were recorded at 24 hours after SAH. Hematoxylin-eosin, Nissl and TUNEL staining were performed to evaluate neuronal apoptosis. Data from mice with a score of 8-12 in intracerebral bleeding (i.e. moderate SAH), were analyzed. Results The degree of SAH-induced neuronal injury was directly correlated to the amount of blood lost, which in turn was negatively reflected in their behavior. The Wild Type (WT)-SAH group behaved poorly when compared to the knockout (KO)-SAH mice and their poor neurological score was accompanied by an increase in the number of apoptotic neurons. Conversely, the improvement of behavior in the KO-SAH group was associated with a marked reduction in apoptotic neurons. Conclusions These results suggest that ZnT3 knockout may have played a vital role in the attenuation of neuronal injury after SAH and that ZnT3 may prove to be a potential therapeutic target for neuroprotection in EBI.


Sign in / Sign up

Export Citation Format

Share Document