scholarly journals Financial stability in response to climate change in a northern temperate economy

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Kayla Stan ◽  
Graham A. Watt ◽  
Arturo Sanchez-Azofeifa

AbstractClimate change will have considerable impact on the global economy. Estimates of the economic damages due to climate change have focused on the effect of average temperature, but not the effect of other important climate variables. Related research has not explored the sub-annual economic cycles which may be impacted by climate volatility. To address these deficits, we propose a flexible, non-linear framework which includes a wide range of climate variables to estimate changes in GDP and project sub-annual economic cycle adjustments (period, amplitude, trough depth). We find that the inclusion of a more robust set of climate variables improves model performance by over 20%. Importantly, the improved model predicts an increase in GDP rather than a decrease when only temperature is considered. We also find that climate influences the sub-annual economics of all but one province in Canada. Highest stressed were the Prairie and Atlantic regions. Least stressed was the Southeastern region. Our study advances understanding of the nuances in the relationship between climate change and economic output in Canada. It also provides a method that can be applied to related economies globally to target adaptation and resilience management.

2020 ◽  
Vol 6 (4) ◽  
pp. 437-462
Author(s):  
Leonid M. Grigoryev ◽  
Dzhanneta D. Medzhidova

The international community has become increasingly concerned with sustainable development and particularly with preventing climate change. The COVID-19 pandemic and global recession of 2020 will exacerbate the situation not just for 2020–2021, but for many years to come. Sadly, it is a game-changer. The necessity to solve problems of poverty (energy poverty) and inequality, as well as growth and climate change mitigation, now haunts intellectuals, forecasters, and politicians. These three problems constitute the global energy trilemma (GET). There is a wide range of forecasts, scenarios, and political plans emerging after the Paris Agreement in 2015. They demonstrate concerns about the slow progress on the matter; however, they still increase the goals for 2030–2050. The global capital formation is a key tool for changes while also representing the hard-budget investment constraints. This article examines practical features of recent trends in energy, poverty, and climate change mitigation, arguing that allocation and coordinated management of sufficient financial resources are vital for a simultaneous solution of GET. No group of countries can hope to solve each of the Sustainable Development Goals (SDG) separately. The global economy has reached the point where it has an urgent need for cooperation.


2013 ◽  
Vol 94 (10) ◽  
pp. 1519-1539 ◽  
Author(s):  
Bruce A. Wielicki ◽  
D. F. Young ◽  
M. G. Mlynczak ◽  
K. J. Thome ◽  
S. Leroy ◽  
...  

The Climate Absolute Radiance and Refractivity Observatory (CLARREO) mission will provide a calibration laboratory in orbit for the purpose of accurately measuring and attributing climate change. CLARREO measurements establish new climate change benchmarks with high absolute radiometric accuracy and high statistical confidence across a wide range of essential climate variables. CLARREO's inherently high absolute accuracy will be verified and traceable on orbit to Système Internationale (SI) units. The benchmarks established by CLARREO will be critical for assessing changes in the Earth system and climate model predictive capabilities for decades into the future as society works to meet the challenge of optimizing strategies for mitigating and adapting to climate change. The CLARREO benchmarks are derived from measurements of the Earth's thermal infrared spectrum (5–50 μm), the spectrum of solar radiation reflected by the Earth and its atmosphere (320–2300 nm), and radio occultation refractivity from which accurate temperature profiles are derived. The mission has the ability to provide new spectral fingerprints of climate change, as well as to provide the first orbiting radiometer with accuracy sufficient to serve as the reference transfer standard for other space sensors, in essence serving as a “NIST [National Institute of Standards and Technology] in orbit.” CLARREO will greatly improve the accuracy and relevance of a wide range of space-borne instruments for decadal climate change. Finally, CLARREO has developed new metrics and methods for determining the accuracy requirements of climate observations for a wide range of climate variables and uncertainty sources. These methods should be useful for improving our understanding of observing requirements for most climate change observations.


2012 ◽  
Vol 5 (1) ◽  
pp. 245-256 ◽  
Author(s):  
N. R. Kaye ◽  
A. Hartley ◽  
D. Hemming

Abstract. Maps are a crucial asset in communicating climate science to a diverse audience, and there is a wealth of software available to analyse and visualise climate information. However, this availability makes it easy to create poor maps as users often lack an underlying cartographic knowledge. Unlike traditional cartography, where many known standards allow maps to be interpreted easily, there is no standard mapping approach used to represent uncertainty (in climate or other information). Consequently, a wide range of techniques have been applied for this purpose, and users may spend unnecessary time trying to understand the mapping approach rather than interpreting the information presented. Furthermore, communicating and visualising uncertainties in climate data and climate change projections, using for example ensemble based approaches, presents additional challenges for mapping that require careful consideration. The aim of this paper is to provide background information and guidance on suitable techniques for mapping climate variables, including uncertainty. We assess a range of existing and novel techniques for mapping variables and uncertainties, comparing "intrinsic" approaches that use colour in much the same way as conventional thematic maps with "extrinsic" approaches that incorporate additional geometry such as points or features. Using cartographic knowledge and lessons learned from mapping in different disciplines we propose the following 6 general mapping guidelines to develop a suitable mapping technique that represents both magnitude and uncertainty in climate data: – use a sensible sequential or diverging colour scheme; – use appropriate colour symbolism if it is applicable; – ensure the map is usable by colour blind people; – use a data classification scheme that does not misrepresent the data; – use a map projection that does not distort the data – attempt to be visually intuitive to understand. Using these guidelines, we suggest an approach to map climate variables with associated uncertainty, that can be easily replicated for a wide range of climate mapping applications. It is proposed this technique would provide a consistent approach suitable for mapping information for the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC AR5).


2021 ◽  
Vol 2 (2) ◽  
pp. 63-80
Author(s):  
Stephen Chitengi Sakapaji

Climate change remains a serious global problem posing a wide range of challenges and impacts which will likely hinder the attainment of the widely discussed sustainable development goals (SDGs). The impacts and threats from a changing climate have the potential to significantly impact all sectors of the global economy and will largely be multifaceted, multidimensional, and multi-sectoral. These adverse impacts will to a greater extent, be manifested at the local and community level where the adaptability capacity is weak and resources are scarce. In the last two decades, there has been growing support and evidence that suggests that local people and communities in partnership with their local governments and NGOs are undertaking community ecological based adaptation (CEBA) practices at both the local and community level which are enhancing their adaptability and resilience capacities to a changing climate. CEBA mechanisms are initiatives and practices that local and rural communities across the developing world are sometimes adopting in partnership with their local government and non-governmental organizations to adapt to a changing climate. However, over the years, these initiatives, experiments, and activities have been poorly actualized, communicated, and there is uncertainty on whether these practices and mechanisms are enhancing the adaptability and resilience capacities of the many poor people in these communities. It is from this background that this paper seeks to assess and analyze present and future climate change impacts on agriculture in Central Zambia and further seeks to appraise the effectiveness of CEBA mechanisms being adopted and utilized in this region. Using community assessment and rural appraisal tools this research paper found that indeed some CEBA practices are innovative and effective and are enhancing the adaptability and resilience of the local people in agriculture in this region. The paper recommends that the advancement, funding, and integration of innovative and effective CEBA practices with scientific knowledge and the ultimate replication and incorporation of these practices into developmental and climate change policies can be one of the most beneficial and effective ways for a sustainable, adaptive, and resilient agriculture sector in the face of a changing and unpredictable climate.


2020 ◽  
Vol 3 (2020) ◽  
pp. 48-64
Author(s):  
Giuliana Birindelli ◽  
◽  
Vera Palea ◽  
Luca Trussoni ◽  
Fabio Verachi ◽  
...  

Climate change is causing substantial structural adjustments to the global economy. Several sectors, such as coal and steel, are undergoing severe problems related to the inevitable transition to a low-carbon economy, while others such as renewables and new environmental adaptation technologies are benefiting substantially. In this context, regulators are beginning to intervene on the legislation, while investors, customers and civil society are looking for alternatives to mitigate, adapt and make these issues more transparent. This article aims to analyze the impact that these changes will inevitably have on banks' balance sheets, introducing new risks but also opportunities. The final purpose is to help banks integrate climate risks into their organizational framework and to provide guidance on the implementation of the recommendations published by the Task Force on Climate-related Financial Disclosures (TCFD) within the broader Financial Stability Board (FSB) objectives and the UN Environment Finance Initiative (UNEP FI). Starting from a long-term perspective, the work suggests considering climate risk as a financial risk, overcoming traditional approaches that focus on reputational risk. This change implies the integration of climate change risk into the logic of Risk Management (Credit, Market and Operational risks) and a consequent sharing of responsibilities with the structures of Corporate Social Responsibility (CSR). The TCFD recommendations urge banks to use forward looking scenario analyzes, including stress tests, to evaluate and disseminate the "actual and potential impacts" of climate-related risks and opportunities, suggesting in particular to consider the consequences in terms of two categories of risk: physical and transition risk


2020 ◽  
Author(s):  
Rubén D. Manzanedo ◽  
Peter Manning

The ongoing COVID-19 outbreak pandemic is now a global crisis. It has caused 1.6+ million confirmed cases and 100 000+ deaths at the time of writing and triggered unprecedented preventative measures that have put a substantial portion of the global population under confinement, imposed isolation, and established ‘social distancing’ as a new global behavioral norm. The COVID-19 crisis has affected all aspects of everyday life and work, while also threatening the health of the global economy. This crisis offers also an unprecedented view of what the global climate crisis may look like. In fact, some of the parallels between the COVID-19 crisis and what we expect from the looming global climate emergency are remarkable. Reflecting upon the most challenging aspects of today’s crisis and how they compare with those expected from the climate change emergency may help us better prepare for the future.


Author(s):  
Sergei Soldatenko ◽  
Sergei Soldatenko ◽  
Genrikh Alekseev ◽  
Genrikh Alekseev ◽  
Alexander Danilov ◽  
...  

Every aspect of human operations faces a wide range of risks, some of which can cause serious consequences. By the start of 21st century, mankind has recognized a new class of risks posed by climate change. It is obvious, that the global climate is changing, and will continue to change, in ways that affect the planning and day to day operations of businesses, government agencies and other organizations and institutions. The manifestations of climate change include but not limited to rising sea levels, increasing temperature, flooding, melting polar sea ice, adverse weather events (e.g. heatwaves, drought, and storms) and a rise in related problems (e.g. health and environmental). Assessing and managing climate risks represent one of the most challenging issues of today and for the future. The purpose of the risk modeling system discussed in this paper is to provide a framework and methodology to quantify risks caused by climate change, to facilitate estimates of the impact of climate change on various spheres of human activities and to compare eventual adaptation and risk mitigation strategies. The system integrates both physical climate system and economic models together with knowledge-based subsystem, which can help support proactive risk management. System structure and its main components are considered. Special attention is paid to climate risk assessment, management and hedging in the Arctic coastal areas.


Author(s):  
Karen J. Esler ◽  
Anna L. Jacobsen ◽  
R. Brandon Pratt

The world’s mediterranean-type climate regions (including areas within the Mediterranean, South Africa, Australia, California, and Chile) have long been of interest to biologists by virtue of their extraordinary biodiversity and the appearance of evolutionary convergence between these disparate regions. Comparisons between mediterranean-type climate regions have provided important insights into questions at the cutting edge of ecological, ecophysiological and evolutionary research. These regions, dominated by evergreen shrubland communities, contain many rare and endemic species. Their mild climate makes them appealing places to live and visit and this has resulted in numerous threats to the species and communities that occupy them. Threats include a wide range of factors such as habitat loss due to development and agriculture, disturbance, invasive species, and climate change. As a result, they continue to attract far more attention than their limited geographic area might suggest. This book provides a concise but comprehensive introduction to mediterranean-type ecosystems. As with other books in the Biology of Habitats Series, the emphasis in this book is on the organisms that dominate these regions although their management, conservation, and restoration are also considered.


BMC Biology ◽  
2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Juan C. Baca Cabrera ◽  
Regina T. Hirl ◽  
Rudi Schäufele ◽  
Andy Macdonald ◽  
Hans Schnyder

Abstract Background The anthropogenic increase of atmospheric CO2 concentration (ca) is impacting carbon (C), water, and nitrogen (N) cycles in grassland and other terrestrial biomes. Plant canopy stomatal conductance is a key player in these coupled cycles: it is a physiological control of vegetation water use efficiency (the ratio of C gain by photosynthesis to water loss by transpiration), and it responds to photosynthetic activity, which is influenced by vegetation N status. It is unknown if the ca-increase and climate change over the last century have already affected canopy stomatal conductance and its links with C and N processes in grassland. Results Here, we assessed two independent proxies of (growing season-integrating canopy-scale) stomatal conductance changes over the last century: trends of δ18O in cellulose (δ18Ocellulose) in archived herbage from a wide range of grassland communities on the Park Grass Experiment at Rothamsted (U.K.) and changes of the ratio of yields to the CO2 concentration gradient between the atmosphere and the leaf internal gas space (ca – ci). The two proxies correlated closely (R2 = 0.70), in agreement with the hypothesis. In addition, the sensitivity of δ18Ocellulose changes to estimated stomatal conductance changes agreed broadly with published sensitivities across a range of contemporary field and controlled environment studies, further supporting the utility of δ18Ocellulose changes for historical reconstruction of stomatal conductance changes at Park Grass. Trends of δ18Ocellulose differed strongly between plots and indicated much greater reductions of stomatal conductance in grass-rich than dicot-rich communities. Reductions of stomatal conductance were connected with reductions of yield trends, nitrogen acquisition, and nitrogen nutrition index. Although all plots were nitrogen-limited or phosphorus- and nitrogen-co-limited to different degrees, long-term reductions of stomatal conductance were largely independent of fertilizer regimes and soil pH, except for nitrogen fertilizer supply which promoted the abundance of grasses. Conclusions Our data indicate that some types of temperate grassland may have attained saturation of C sink activity more than one century ago. Increasing N fertilizer supply may not be an effective climate change mitigation strategy in many grasslands, as it promotes the expansion of grasses at the disadvantage of the more CO2 responsive forbs and N-fixing legumes.


Energies ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1347
Author(s):  
Kyriakos Maniatis ◽  
David Chiaramonti ◽  
Eric van den Heuvel

The present work considers the dramatic changes the COVID-19 pandemic has brought to the global economy, with particular emphasis on energy. Focusing on the European Union, the article discusses the opportunities policy makers can implement to reduce the climate impacts and achieve the Paris Agreement 2050 targets. The analysis specifically looks at the fossil fuels industry and the future of the fossil sector post COVID-19 pandemic. The analysis first revises the fossil fuel sector, and then considers the need for a shift of the global climate change policy from promoting the deployment of renewable energy sources to curtailing the use of fossil fuels. This will be a change to the current global approach, from a relative passive one to a strategically dynamic and proactive one. Such a curtailment should be based on actual volumes of fossil fuels used and not on percentages. Finally, conclusions are preliminary applied to the European Union policies for net zero by 2050 based on a two-fold strategy: continuing and reinforcing the implementation of the Renewable Energy Directive to 2035, while adopting a new directive for fixed and over time increasing curtailment of fossils as of 2025 until 2050.


Sign in / Sign up

Export Citation Format

Share Document