scholarly journals The legacy of the extinct Neotropical megafauna on plants and biomes

2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Vinicius L. Dantas ◽  
Juli G. Pausas

AbstractLarge mammal herbivores are important drivers of plant evolution and vegetation patterns, but the extent to which plant trait and ecosystem geography currently reflect the historical distribution of extinct megafauna is unknown. We address this question for South and Central America (Neotropical biogeographic realm) by compiling data on plant defence traits, climate, soil, and fire, as well as on the historical distribution of extinct megafauna and extant mammal herbivores. We show that historical mammal herbivory, especially by extinct megafauna, and soil fertility explain substantial variability in wood density, leaf size, spines and latex. We also identified three distinct regions (‘‘antiherbiomes’’), differing in plant defences, environmental conditions, and megafauna history. These patterns largely matched those observed in African ecosystems, where abundant megafauna still roams, and suggest that some ecoregions experienced savanna-to-forest shifts following megafauna extinctions. Here, we show that extinct megafauna left a significant imprint on current ecosystem biogeography.

Author(s):  
Vinícius Dantas ◽  
Juli Pausas

Large mammal herbivores are important drivers of plant evolution and vegetation patterns, but whether current plant traits and ecosystem geography reflect the historical distribution of extinct megafauna is unknown. We address this question for Southern America (Neotropical biogeographic realm) by relating plant defense trait information at the ecoregion scale to climate, soil, fire, and the historical distribution of megafauna. Here we show that megafauna history explains substantial trait variability and detected three distinct regions (called “Antiherbiomes”) characterized by convergent plant defense strategies, environmental and megafauna patterns. We also identified ecoregions that experienced biome shift, from grassy- to forest- dominated, following the Pleistocene megafauna extinction. These results suggest that extinct megafauna left a significant imprint in the current plant trait and ecosystems biogeography of Southern America.


2021 ◽  
Vol 22 (3) ◽  
pp. 1357
Author(s):  
Ewelina A. Klupczyńska ◽  
Tomasz A. Pawłowski

Environmental conditions are the basis of plant reproduction and are the critical factors controlling seed dormancy and germination. Global climate change is currently affecting environmental conditions and changing the reproduction of plants from seeds. Disturbances in germination will cause disturbances in the diversity of plant communities. Models developed for climate change scenarios show that some species will face a significant decrease in suitable habitat area. Dormancy is an adaptive mechanism that affects the probability of survival of a species. The ability of seeds of many plant species to survive until dormancy recedes and meet the requirements for germination is an adaptive strategy that can act as a buffer against the negative effects of environmental heterogeneity. The influence of temperature and humidity on seed dormancy status underlines the need to understand how changing environmental conditions will affect seed germination patterns. Knowledge of these processes is important for understanding plant evolution and adaptation to changes in the habitat. The network of genes controlling seed dormancy under the influence of environmental conditions is not fully characterized. Integrating research techniques from different disciplines of biology could aid understanding of the mechanisms of the processes controlling seed germination. Transcriptomics, proteomics, epigenetics, and other fields provide researchers with new opportunities to understand the many processes of plant life. This paper focuses on presenting the adaptation mechanism of seed dormancy and germination to the various environments, with emphasis on their prospective roles in adaptation to the changing climate.


2002 ◽  
Vol 15 (2) ◽  
pp. 205 ◽  
Author(s):  
Christina Flann ◽  
Pauline Y. Ladiges ◽  
Neville G. Walsh

A study of morphological variation in Leptorhynchos squamatus (Labill.) Less. across its range in south-eastern Australia was undertaken to test the hypothesis that L. squamatus includes two taxa. Phenetic pattern analyses of both field-collected and herbarium specimens on the basis of morphology confirmed two major groups. Bract, cypsela, pappus bristle and leaf characters were particularly important in separating the two groups. The taxa are separated by altitude differences with one being a low-altitude plant found in many habitats and the other being a high-altitude taxon that is a major component of alpine meadows. Lowland plants have dark bract tips, fewer and wider pappus bristles than alpine plants, papillae on the cypselas and more linear leaves. A somewhat intermediate population from the Major Mitchell Plateau in the Grampians shows some alpine and some lowland characters but is included in the lowland taxon. Seeds from five populations (two alpine, two lowland and Major Mitchell) were germinated and plants grown for 18 weeks under four controlled sets of environmental conditions. The experiment showed that leaf size and some other characters are affected by environmental conditions, but that there are underlying genetic differences between the lowland and alpine forms. Leptorhynchos squamatus subsp. alpinus Flann is described here to accommodate the highland taxon.


2009 ◽  
Vol 100 (3) ◽  
pp. 367-371 ◽  
Author(s):  
O.L. Kvedaras ◽  
M. An ◽  
Y.S. Choi ◽  
G.M. Gurr

AbstractSilicon (Si) is known to have a role in constitutive plant defence against arthropod pests, and recent work has illustrated involvement in induced plant defences. The present tri-trophic study tested the hypothesis that Si increases natural enemy attraction to pest-infested plants and improves biological control. Cucumber plants treated with potassium silicate (Si+) and untreated control plants (Si−) were maintained in separately vented glasshouse compartments. Y-tube olfactometer studies showed that adult Dicranolaius bellulus were significantly more attracted to Si+ plants upon which Helicoverpa armigera larvae had fed compared with Si−, pest-infested plants. Predators were not significantly more attracted to Si+ plants when comparing uninfested cucumbers. In a field experiment, we placed H. armigera-infested and uninfested Si+ and Si− cucumber plants in a lucerne stand. Removal rates of H. armigera egg baits showed predation was greater for Si+ infested plants than for other treatments. Results suggest that Si applied to plants with a subsequent pest infestation increases the plants' attractiveness to natural enemies; an effect that was reflected in elevated biological control in the field.


2021 ◽  
Vol 8 (11) ◽  
Author(s):  
Haibin Hang ◽  
Martin Bauer ◽  
Washington Mio ◽  
Luke Mander

Leaf shape is a key plant trait that varies enormously. The range of applications for data on this trait requires frequent methodological development so that researchers have an up-to-date toolkit with which to quantify leaf shape. We generated a dataset of 468 leaves produced by Ginkgo biloba , and 24 fossil leaves produced by evolutionary relatives of extant Ginkgo . We quantified the shape of each leaf by developing a geometric method based on elastic curves and a topological method based on persistent homology. Our geometric method indicates that shape variation in modern leaves is dominated by leaf size, furrow depth and the angle of the two lobes at the leaf base that is also related to leaf width. Our topological method indicates that shape variation in modern leaves is dominated by leaf size and furrow depth. We have applied both methods to modern and fossil material: the methods are complementary, identifying similar primary patterns of variation, but also revealing different aspects of morphological variation. Our topological approach distinguishes long-shoot leaves from short-shoot leaves, both methods indicate that leaf shape influences or is at least related to leaf area, and both could be applied in palaeoclimatic and evolutionary studies of leaf shape.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Melisa Vázquez-López ◽  
Nandadevi Córtes-Rodríguez ◽  
Sahid M. Robles-Bello ◽  
Alfredo Bueno-Hernández ◽  
Luz E. Zamudio-Beltrán ◽  
...  

Abstract Background The Mesoamerican dominion is a biogeographic area of great interest due to its complex topography and distinctive climatic history. This area has a large diversity of habitats, including tropical deciduous forests, which house a large number of endemic species. Here, we assess phylogeographic pattern, genetic and morphometric variation in the Cinnamon Hummingbird complex Amazilia rutila, which prefers habitats in this region. This resident species is distributed along the Pacific coast from Sinaloa—including the Tres Marías Islands in Mexico to Costa Rica, and from the coastal plain of the Yucatán Peninsula of Mexico south to Belize. Methods We obtained genetic data from 85 samples of A. rutila, using 4 different molecular markers (mtDNA: ND2, COI; nDNA: ODC, MUSK) on which we performed analyses of population structure (median-joining network, STRUCTURE, FST, AMOVA), Bayesian and Maximum Likelihood phylogenetic analyses, and divergence time estimates. In order to evaluate the historic suitability of environmental conditions, we constructed projection models using past scenarios (Pleistocene periods), and conducted Bayesian Skyline Plots (BSP) to visualize changes in population sizes over time. To analyze morphometric variation, we took measurements of 5 morphological traits from 210 study skins. We tested for differences between sexes, differences among geographic groups (defined based on genetic results), and used PCA to examine the variation in multivariate space. Results Using mtDNA, we recovered four main geographic groups: the Pacific coast, the Tres Marías Islands, the Chiapas region, and the Yucatán Peninsula together with Central America. These same groups were recovered by the phylogenetic results based on the multilocus dataset. Demography based on BSP results showed constant population size over time throughout the A. rutila complex and within each geographic group. Ecological niche model projections onto past scenarios revealed no drastic changes in suitable conditions, but revealed some possible refuges. Morphometric results showed minor sexual dimorphism in this species and statistically significant differences between geographic groups. The Tres Marías Islands population was the most differentiated, having larger body size than the remaining groups. Conclusions The best supported evolutionary hypothesis of diversification within this group corresponds to geographic isolation (limited gene flow), differences in current environmental conditions, and historical habitat fragmentation promoted by past events (Pleistocene refugia). Four well-defined clades comprise the A. rutila complex, and we assess the importance of a taxonomic reevaluation. Our data suggest that both of A. r. graysoni (Tres Marías Islands) and A. r. rutila (Pacific coast) should be considered full species. The other two strongly supported clades are: (a) the Chiapas group (southern Mexico), and (b) the populations from Yucatán Peninsula and Central America. These clades belong to the corallirostris taxon, which needs to be split and properly named.


2011 ◽  
Vol 279 (1730) ◽  
pp. 952-958 ◽  
Author(s):  
Gaylord A. Desurmont ◽  
Franck Hérard ◽  
Anurag A. Agrawal

Herbivores have been hypothesized to adapt locally to variation in plant defences and such adaptation could facilitate novel associations in the context of biological invasions. Here, we show that in the native range of the viburnum leaf beetle (VLB, Pyrrhalta viburni ), two populations of geographically isolated hosts— Viburnum opulus and Viburnum tinus —have divergent defences against VLB oviposition: negative versus positive density-dependent egg-crushing wound responses, respectively. Populations of beetles coexisting with each host show an adaptive behavioural response: aggregative versus non-aggregative oviposition on V. opulus and V. tinus , respectively. In parallel, we show that in North America, where VLB is invasive, defences of three novel hosts are negatively density-dependent, and beetles' oviposition behaviour is aggregative. Thus, local adaptation to plant defences has the potential to facilitate the invasion of herbivores onto novel hosts.


2017 ◽  
Vol 95 (12) ◽  
pp. 909-912 ◽  
Author(s):  
Zenon J. Czenze ◽  
Miranda B. Dunbar

Torpor is common in bats, but has historically been viewed as an energy-saving technique reserved for temperate and subarctic climates; however, torpor use is common across several tropical bat families. Central America hosts a great diversity of bats with approximately 150 species, yet data from this area are lacking compared with tropical Africa and Australia. We investigated thermoregulatory responses of bats from neotropical Belize and captured adult bats in the tropical forests of Lamanai Archeological Reserve, Belize. After a 12 h acclimation period, we recorded rectal temperature prior to and after exposing bats to an ambient temperature (Ta) of 7 °C for up to 2 h in an environmental chamber. All 11 species across four families expressed torpor to some degree upon exposure to cool temperatures. Individuals from Vespertilionidae defended the lowest resting body temperature (Tb) and showed the greatest decrease in Tb after acute exposure to low Ta. Our data help to establish a new spectrum of physiological ability for this group of mammals and shed light on the evolution of torpor and heterothermy. We show that energy conservation is important even in warm and energetically stable environmental conditions. Understanding how and why torpor is used in warm climates will help to better define paradigms in physiological ecology.


Author(s):  
Anthony Joern ◽  
Edward J. Raynor

Grazing systems, grass-like vegetation interacting with their large mammal grazers, are important globally, where estimates of their potential extent (depending on classifications) range from 30 to 70 percent of the terrestrial land surface and show a major presence on five continents. In grasslands and savanna ecosystems, the grazing energy channel is prominent (~50 percent of energy flows through herbivores), unlike energy flow in more arid ecosystems where the detrital energy channel predominates. While variable, estimates of consumption of above-ground net primary productivity (ANPP) by native large mammal herbivores ranges from 1 (desert grassland) to ~64 percent (mesic grasslands), and cattle remove 15–80 percent (see chapter by J. K. Detling, “Grasslands and Savannas: Regulation of energy flow and nutrient cycling by herbivores,” in Concepts of Ecosystem Ecology: A Comparative View, edited by L. R. Pomeroy and J. J. Alberts [New York: Springer-Verlag, 1988], pp. 131–154). Consequently, in addition to altered aboveground biomass, one expects significant system responses to grazers, including altered plant community species composition, changed plant morphology and population structure, impacted nutrient cycles, and altered habitat structure in turn affecting animal species distributions both native and exotic. Examples of each of these responses are provided in this article. Our bibliography takes a decidedly grazer-centric view. Topics in grazing ecology are wide ranging, where both plant and grazer responses are studied as we attempt to integrate the many moving parts operating at multiple scales to understand responses from multiple perspectives. These include an understanding of the role of disturbances (fire, drought, herbivory), internal dynamics driving fire-grazer interactions, variable environmental conditions (especially primary production and rainfall), resource heterogeneity at multiple spatial scales, variable herbivore body size, different digestive physiologies of herbivores, sedentary presence and migratory movement of large mammalian herbivores in response to variable environmental conditions, and trophic control of food webs including bottom-up/top-down regulation with important roles for direct and indirect species interactions. Combined, many factors contribute to a range of equilibrial and nonequilibrial interpretations of key responses and patterns of grazing ecology with important implications for management and conservation of these systems worldwide. Much of grazing ecology focuses on the interactions of large mammal herbivores with vegetation structure and plant communities. Much less is known about invertebrate grazers, although they can be important participants as well. This article deals primarily with vertebrate grazers, factors affecting grazing dynamics, and examples of the effects of grazing on grassland structure and function.


Sign in / Sign up

Export Citation Format

Share Document