scholarly journals Elasticity-based-exfoliability measure for high-throughput computational exfoliation of two-dimensional materials

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Xiangzheng Jia ◽  
Qian Shao ◽  
Yongchun Xu ◽  
Ruishan Li ◽  
Kai Huang ◽  
...  

AbstractTwo-dimensional (2D) materials are promising candidates for uses in next-generation electronic and optoelectronic devices. However, only a few high-quality 2D materials have been mechanically exfoliated to date. One of the critical issues is that the exfoliability of 2D materials from their bulk precursors is unknown. To assess the exfoliability of potential 2D materials from their bulk counterparts, we derived an elasticity-based-exfoliability measure based on an exfoliation mechanics model. The proposed measure has a clear physical meaning and is universally applicable to all material systems. We used this measure to calculate the exfoliability of 10,812 crystals having a first-principles calculated elastic tensor. By setting the threshold values for easy and potential exfoliation based on already-exfoliated materials, we predicted 58 easily exfoliable bulk crystals and 90 potentially exfoliable bulk crystals for 2D materials. As evidence, a topology-based algorithm indicates that there is no interlayer bonding topology for 93% predicted exfoliable bulk crystals, and the analysis on packing ratios shows that 99% predicted exfoliable bulk crystals exhibit a relatively low packing ratio value. Moreover, literature survey shows that 34 predicted exfoliable bulk crystals have been experimentally exfoliated into 2D materials. In addition, the characteristics of these predicted 2D materials were discussed for practical use of such materials.

Nanophotonics ◽  
2020 ◽  
Vol 9 (8) ◽  
pp. 2315-2340 ◽  
Author(s):  
Junli Wang ◽  
Xiaoli Wang ◽  
Jingjing Lei ◽  
Mengyuan Ma ◽  
Cong Wang ◽  
...  

AbstractDue to the unique properties of two-dimensional (2D) materials, much attention has been paid to the exploration and application of 2D materials. In this review, we focus on the application of 2D materials in mode-locked fiber lasers. We summarize the synthesis methods for 2D materials, fiber integration with 2D materials and 2D materials based saturable absorbers. We discuss the performance of the diverse mode-locked fiber lasers in the typical operating wavelength such as 1, 1.5, 2 and 3 μm. Finally, a summary and outlook of the further applications of the new materials in mode-locked fiber lasers are presented.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Mei Zhao ◽  
Sijie Yang ◽  
Kenan Zhang ◽  
Lijie Zhang ◽  
Ping Chen ◽  
...  

AbstractNonlayered two-dimensional (2D) materials have attracted increasing attention, due to novel physical properties, unique surface structure, and high compatibility with microfabrication technique. However, owing to the inherent strong covalent bonds, the direct synthesis of 2D planar structure from nonlayered materials, especially for the realization of large-size ultrathin 2D nonlayered materials, is still a huge challenge. Here, a general atomic substitution conversion strategy is proposed to synthesize large-size, ultrathin nonlayered 2D materials. Taking nonlayered CdS as a typical example, large-size ultrathin nonlayered CdS single-crystalline flakes are successfully achieved via a facile low-temperature chemical sulfurization method, where pre-grown layered CdI2 flakes are employed as the precursor via a simple hot plate assisted vertical vapor deposition method. The size and thickness of CdS flakes can be controlled by the CdI2 precursor. The growth mechanism is ascribed to the chemical substitution reaction from I to S atoms between CdI2 and CdS, which has been evidenced by experiments and theoretical calculations. The atomic substitution conversion strategy demonstrates that the existing 2D layered materials can serve as the precursor for difficult-to-synthesize nonlayered 2D materials, providing a bridge between layered and nonlayered materials, meanwhile realizing the fabrication of large-size ultrathin nonlayered 2D materials.


Author(s):  
Adam Brill ◽  
Elad Koren ◽  
Graham de Ruiter

Atomically thin two-dimensional materials (2DMs) have moved in the past 15 years from a serendipitously isolated single-layered graphene curiosity to a near technological renaissance, where 2DMs such as graphene and...


CCS Chemistry ◽  
2019 ◽  
pp. 117-127 ◽  
Author(s):  
Mengqi Zeng ◽  
Yunxu Chen ◽  
Enze Zhang ◽  
Jiaxu Li ◽  
Rafael G. Mendes ◽  
...  

Currently, most two-dimensional (2D) materials that are of interest to emergent applications have focused on van der Waals–layered materials (VLMs) because of the ease with which the layers can be separated (e.g., graphene). Strong interlayer-bonding-layered materials (SLMs) in general have not been thoroughly explored, and one of the most critical present issues is the huge challenge of their preparation, although their physicochemical property transformation should be richer than VLMs and deserves greater attention. MAX phases are a classical kind of SLM. However, limited to the strong interlayer bonding, their corresponding 2D counterparts have never been obtained, nor has there been investigation of their fundamental properties in the 2D limitation. Here, the authors develop a controllable bottom-up synthesis strategy for obtaining 2D SLMs single crystal through the design of a molecular scaffold with Mo 2GaC, which is a typical kind of MAX phase, as an example. The superconducting transitions of Mo 2GaC at the 2D limit are clearly inherited from the bulk, which is consistent with Berezinskii–Kosterlitz–Thouless behavior. The authors believe that their molecular scaffold strategy will allow the fabrication of other high-quality 2D SLMs single crystals, which will further expand the family of 2D materials and promote their future application.


2017 ◽  
Vol 96 (5) ◽  
Author(s):  
Banasree Sadhukhan ◽  
Prashant Singh ◽  
Arabinda Nayak ◽  
Sujoy Datta ◽  
Duane D. Johnson ◽  
...  

Author(s):  
Bohayra Mortazavi ◽  
Masoud Shahrokhi ◽  
Xiaoying Zhuang ◽  
Alexander V. Shapeev ◽  
Timon Rabczuk

In the latest experimental advances in the field of two-dimensional (2D) materials, penta-PdPS and penta-PdPSe layered materials have been fabricated. In this work, we conduct first-principles calculations to explore the...


2021 ◽  
Vol 8 (1) ◽  
pp. 182-200
Author(s):  
Yanglizhi Li ◽  
Luzhao Sun ◽  
Haiyang Liu ◽  
Yuechen Wang ◽  
Zhongfan Liu

Recent advances on preparing single-crystal metals and their crucial roles in controlled growth of high-quality 2D materials are reviewed.


2020 ◽  
Vol 22 (39) ◽  
pp. 22140-22156
Author(s):  
Xin-Ping Zhai ◽  
Bo Ma ◽  
Qiang Wang ◽  
Hao-Li Zhang

Two-dimensional materials are now excelling in yet another arena of ultrafast photonics, including optical modulation through optical limiting/mode-locking, photodetectors, optical communications, integrated miniaturized all-optical devices, etc.


Sign in / Sign up

Export Citation Format

Share Document