scholarly journals An attenuated Zika virus NS4B protein mutant is a potent inducer of antiviral immune responses

npj Vaccines ◽  
2019 ◽  
Vol 4 (1) ◽  
Author(s):  
Guangyu Li ◽  
Awadalkareem Adam ◽  
Huanle Luo ◽  
Chao Shan ◽  
Zengguo Cao ◽  
...  

AbstractLive attenuated vaccines (LAVs) are one of the most important strategies to control flavivirus diseases. The flavivirus nonstructural (NS) 4B proteins are a critical component of both the virus replication complex and evasion of host innate immunity. Here we have used site-directed mutagenesis of residues in the highly conserved N-terminal and central hydrophobic regions of Zika virus (ZIKV) NS4B protein to identify candidate attenuating mutations. Three single-site mutants were generated, of which the NS4B-C100S mutant was more attenuated than the other two mutants (NS4B-C100A and NS4B-P36A) in two immunocompromised mouse models of fatal ZIKV disease. The ZIKV NS4B-C100S mutant triggered stronger type 1 interferons and interleukin-6 production, and higher ZIKV-specific CD4+ and CD8+ T-cell responses, but induced similar titers of neutralization antibodies compared with the parent wild-type ZIKV strain and a previously reported candidate ZIKV LAV with a 10-nucleotide deletion in 3′-UTR (ZIKV-3′UTR-Δ10). Vaccination with ZIKV NS4B-C100S protected mice from subsequent WT ZIKV challenge. Furthermore, either passive immunization with ZIKV NS4B-C100S immune sera or active immunization with ZIKV NS4B-C100S followed by the depletion of T cells affords full protection from lethal WT ZIKV challenge. In summary, our results suggest that the ZIKV NS4B-C100S mutant may serve as a candidate ZIKV LAV due to its attenuated phenotype and high immunogenicity.

Vaccines ◽  
2020 ◽  
Vol 8 (2) ◽  
pp. 145 ◽  
Author(s):  
Yuchen Wang ◽  
Alejandro Marin-Lopez ◽  
Junjun Jiang ◽  
Michel Ledizet ◽  
Erol Fikrig

Zika Virus (ZIKV) is transmitted primarily by Aedes aegypti mosquitoes, resulting in asymptomatic infection, or acute illness with a fever and headache, or neurological complications, such as Guillain-Barre syndrome or fetal microcephaly. Previously, we determined that AgBR1, a mosquito salivary protein, induces inflammatory responses at the bite site, and that passive immunization with AgBR1 antiserum influences mosquito-transmitted ZIKV infection. Here, we show that the active immunization of mice with AgBR1 adjuvanted with aluminum hydroxide delays lethal mosquito-borne ZIKV infection, suggesting that AgBR1 may be used as part of a vaccine to combat ZIKV.


Diabetologia ◽  
2021 ◽  
Author(s):  
Robin Assfalg ◽  
Jan Knoop ◽  
Kristi L. Hoffman ◽  
Markus Pfirrmann ◽  
Jose Maria Zapardiel-Gonzalo ◽  
...  

Abstract Aims/hypothesis Oral administration of antigen can induce immunological tolerance. Insulin is a key autoantigen in childhood type 1 diabetes. Here, oral insulin was given as antigen-specific immunotherapy before the onset of autoimmunity in children from age 6 months to assess its safety and immune response actions on immunity and the gut microbiome. Methods A phase I/II randomised controlled trial was performed in a single clinical study centre in Germany. Participants were 44 islet autoantibody-negative children aged 6 months to 2.99 years who had a first-degree relative with type 1 diabetes and a susceptible HLA DR4-DQ8-containing genotype. Children were randomised 1:1 to daily oral insulin (7.5 mg with dose escalation to 67.5 mg) or placebo for 12 months using a web-based computer system. The primary outcome was immune efficacy pre-specified as induction of antibody or T cell responses to insulin and measured in a central treatment-blinded laboratory. Results Randomisation was performed in 44 children. One child in the placebo group was withdrawn after the first study visit and data from 22 insulin-treated and 21 placebo-treated children were analysed. Oral insulin was well tolerated with no changes in metabolic variables. Immune responses to insulin were observed in children who received both insulin (54.5%) and placebo (66.7%), and the trial did not demonstrate an effect on its primary outcome (p = 0.54). In exploratory analyses, there was preliminary evidence that the immune response and gut microbiome were modified by the INS genotype Among children with the type 1 diabetes-susceptible INS genotype (n = 22), antibody responses to insulin were more frequent in insulin-treated (72.7%) as compared with placebo-treated children (18.2%; p = 0.03). T cell responses to insulin were modified by treatment-independent inflammatory episodes. Conclusions/interpretation The study demonstrated that oral insulin immunotherapy in young genetically at-risk children was safe, but was not associated with an immune response as predefined in the trial primary outcome. Exploratory analyses suggested that antibody responses to oral insulin may occur in children with a susceptible INS genotype, and that inflammatory episodes may promote the activation of insulin-responsive T cells. Trial registration Clinicaltrials.gov NCT02547519 Funding The main funding source was the German Center for Diabetes Research (DZD e.V.) Graphical abstract


Diabetes ◽  
2008 ◽  
Vol 57 (5) ◽  
pp. 1312-1320 ◽  
Author(s):  
E. Martinuzzi ◽  
G. Novelli ◽  
M. Scotto ◽  
P. Blancou ◽  
J.-M. Bach ◽  
...  

2013 ◽  
Vol 453 (2) ◽  
pp. 261-270 ◽  
Author(s):  
Dan Hu ◽  
Hiroaki Tateno ◽  
Takashi Sato ◽  
Hisashi Narimatsu ◽  
Jun Hirabayashi

Galectins exhibit multiple roles through recognition of diverse structures of β-galactosides. However, this broad specificity often hinders their practical use as probes. In the present study we report a dramatic improvement in the carbohydrate specificity of a multi-specific fungal galectin from the mushroom Agrocybe cylindricea, which binds not only to simple β-galactosides, but also to their derivatives. Site-directed mutagenesis targeting five residues involved in β-galactose binding revealed that replacement of Asn46 with alanine (N46A) increased the binding to GalNAcα1-3Galβ-containing glycans, while eliminating binding to all other β-galactosides, as shown by glycoconjugate microarray analysis. Quantitative analysis by frontal affinity chromatography showed that the mutant N46A had enhanced affinity towards blood group A tetraose (type 2), A hexaose (type 1) and Forssman pentasaccharide with dissociation constants of 5.0×10−6 M, 3.8×10−6 M and 1.0×10−5 M respectively. Surprisingly, all the other mutants generated by saturation mutagenesis of Asn46 exhibited essentially the same specificity as N46A. Moreover, alanine substitution for Pro45, which forms the cis-conformation upon β-galactose binding, exhibited the same specificity as N46A. From a practical viewpoint, the derived N46A mutant proved to be unique as a specific probe to detect GalNAcα1-3Galβ-containing glycans by methods such as flow cytometry, cell staining and lectin microarray.


2003 ◽  
Vol 77 (3) ◽  
pp. 2081-2092 ◽  
Author(s):  
M. M. Addo ◽  
X. G. Yu ◽  
A. Rathod ◽  
D. Cohen ◽  
R. L. Eldridge ◽  
...  

ABSTRACT Cellular immune responses play a critical role in the control of human immunodeficiency virus type 1 (HIV-1); however, the breadth of these responses at the single-epitope level has not been comprehensively assessed. We therefore screened peripheral blood mononuclear cells (PBMC) from 57 individuals at different stages of HIV-1 infection for virus-specific T-cell responses using a matrix of 504 overlapping peptides spanning all expressed HIV-1 proteins in a gamma interferon-enzyme-linked immunospot (Elispot) assay. HIV-1-specific T-cell responses were detectable in all study subjects, with a median of 14 individual epitopic regions targeted per person (range, 2 to 42), and all 14 HIV-1 protein subunits were recognized. HIV-1 p24-Gag and Nef contained the highest epitope density and were also the most frequently recognized HIV-1 proteins. The total magnitude of the HIV-1-specific response ranged from 280 to 25,860 spot-forming cells (SFC)/106 PBMC (median, 4,245) among all study participants. However, the number of epitopic regions targeted, the protein subunits recognized, and the total magnitude of HIV-1-specific responses varied significantly among the tested individuals, with the strongest and broadest responses detectable in individuals with untreated chronic HIV-1 infection. Neither the breadth nor the magnitude of the total HIV-1-specific CD8+-T-cell responses correlated with plasma viral load. We conclude that a peptide matrix-based Elispot assay allows for rapid, sensitive, specific, and efficient assessment of cellular immune responses directed against the entire expressed HIV-1 genome. These data also suggest that the impact of T-cell responses on control of viral replication cannot be explained by the mere quantification of the magnitude and breadth of the CD8+-T-cell response, even if a comprehensive pan-genome screening approach is applied.


2005 ◽  
Vol 86 (2) ◽  
pp. 349-354 ◽  
Author(s):  
Eva K. L. Nordström ◽  
Mattias N. E. Forsell ◽  
Christina Barnfield ◽  
Eivor Bonin ◽  
Tomas Hanke ◽  
...  

With the human immunodeficiency virus type 1 (HIV-1) epidemic expanding at increasing speed, development of a safe and effective vaccine remains a high priority. One of the most central vaccine platforms considered is plasmid DNA. However, high doses of DNA and several immunizations are typically needed to achieve detectable T-cell responses. In this study, a Semliki Forest virus replicon DNA vaccine designed for human clinical trials, DREP.HIVA, encoding an antigen that is currently being used in human trials in the context of a conventional DNA plasmid, pTHr.HIVA, was generated. It was shown that a single immunization of DREP.HIVA stimulated HIV-1-specific T-cell responses in mice, suggesting that the poor immunogenicity of conventional DNA vaccines may be enhanced by using viral replicon-based plasmid systems. The results presented here support the evaluation of Semliki Forest virus replicon DNA vaccines in non-human primates and in clinical studies.


2009 ◽  
Vol 90 (10) ◽  
pp. 2513-2518 ◽  
Author(s):  
Christine S. Siegismund ◽  
Oliver Hohn ◽  
Reinhard Kurth ◽  
Stephen Norley

As a prelude to primate studies, the immunogenicity of wild-type and codon-optimized versions of simian immunodeficiency virus (SIV)agm Gag DNA, with and without co-administered granulocyte–macrophage colony-stimulating factor (GM-CSF) DNA, was directly compared in two strains of mice. Gag-specific T cells in the splenocytes of BALB/c and C57BL/6 mice immunized by gene gun were quantified by ELISpot using panels of overlapping synthetic peptides (15mers) spanning the entire capsid proteins of SIVagm, SIVmac and human immunodeficiency virus type 1. Specific antibodies were measured by ELISA. Codon optimization was shown to significantly increase the immune response to the DNA immunogens, reducing the amount of DNA necessary to induce cellular and antibody responses by one and two orders of magnitude, respectively. Co-administration of murine GM-CSF DNA was necessary for the induction of high level T- and B-cell responses. Finally, it was possible to identify both known and novel T-cell epitopes in the Gag proteins of the three viruses.


2016 ◽  
Vol 63 (1) ◽  
Author(s):  
Sebastian Wawrocki ◽  
Magdalena Druszczynska ◽  
Magdalena Kowalewicz-Kulbat ◽  
Wieslawa Rudnicka

Interleukin 18 (IL-18) is a pleiotropic cytokine involved in the regulation of innate and acquired immune response. In the milieu of IL-12 or IL-15, IL-18 is a potent inducer of IFN-gamma in natural killer (NK) cells and CD4 T helper (Th) 1 lymphocytes. However, IL-18 also modulates Th2 and Th17 cell responses, as well as the activity of CD8 cytotoxic cells and neutrophils, in a host microenvironment-dependent manner. It is produced by various hematopoietic and nonhematopoietic cells, including dendritic cells and macrophages. In an organism, bioactivity of the cytokine depends on the intensity of IL-18 production, the level of its natural inhibitory protein - IL-18BP (IL-18 binding protein) and the surface expression of IL-18 receptors (IL-18R) on the responding cells. This review summarizes the biology of the IL-18/IL-18BP/IL-18R system and its role in the host defense against infections. The prospects for IL-18 application in immunotherapeutic or prophylactic interventions in infectious and non-infectious diseases are discussed.


Sign in / Sign up

Export Citation Format

Share Document