scholarly journals MISpheroID: a knowledgebase and transparency tool for minimum information in spheroid identity

2021 ◽  
Author(s):  
Arne Peirsman ◽  
Eva Blondeel ◽  
Tasdiq Ahmed ◽  
Jasper Anckaert ◽  
Dominique Audenaert ◽  
...  

AbstractSpheroids are three-dimensional cellular models with widespread basic and translational application across academia and industry. However, methodological transparency and guidelines for spheroid research have not yet been established. The MISpheroID Consortium developed a crowdsourcing knowledgebase that assembles the experimental parameters of 3,058 published spheroid-related experiments. Interrogation of this knowledgebase identified heterogeneity in the methodological setup of spheroids. Empirical evaluation and interlaboratory validation of selected variations in spheroid methodology revealed diverse impacts on spheroid metrics. To facilitate interpretation, stimulate transparency and increase awareness, the Consortium defines the MISpheroID string, a minimum set of experimental parameters required to report spheroid research. Thus, MISpheroID combines a valuable resource and a tool for three-dimensional cellular models to mine experimental parameters and to improve reproducibility.

Cancers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 930
Author(s):  
Donatella Delle Cave ◽  
Riccardo Rizzo ◽  
Bruno Sainz ◽  
Giuseppe Gigli ◽  
Loretta L. del Mercato ◽  
...  

Pancreatic cancer, the fourth most common cancer worldwide, shows a highly unsuccessful therapeutic response. In the last 10 years, neither important advancements nor new therapeutic strategies have significantly impacted patient survival, highlighting the need to pursue new avenues for drug development discovery and design. Advanced cellular models, resembling as much as possible the original in vivo tumor environment, may be more successful in predicting the efficacy of future anti-cancer candidates in clinical trials. In this review, we discuss novel bioengineered platforms for anticancer drug discovery in pancreatic cancer, from traditional two-dimensional models to innovative three-dimensional ones.


Crystals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 649
Author(s):  
Jiaona Zou ◽  
Alex Fauler ◽  
Alexander S. Senchenkov ◽  
Nikolai N. Kolesnikov ◽  
Michael Fiederle

The growth of (Cd,Zn)Te (CZT) crystals and the improvement of the crystal quality are part of a research project towards experiments under microgravity using the Traveling Heater Method (THM). In order to determine the experimental parameters, we performed a detailed ground-based program. Three CZT crystals with a nominal Zn content of 10% were grown using THM from a Te-rich solution. The size and distribution of the Te inclusions were evaluated by transmission infrared microscopy (IR). From the three-dimensional mapping of the inclusions, we observed striation-like patterns in all of the crystals. The correlation between the growth parameters and the formation of these striations was explored and discussed. We found that the inclusion striations are related to periodic temperature variations.


Plant Methods ◽  
2019 ◽  
Vol 15 (1) ◽  
Author(s):  
Rachele Tofanelli ◽  
Athul Vijayan ◽  
Sebastian Scholz ◽  
Kay Schneitz

Abstract Background A salient topic in developmental biology relates to the molecular and genetic mechanisms that underlie tissue morphogenesis. Modern quantitative approaches to this central question frequently involve digital cellular models of the organ or tissue under study. The ovules of the model species Arabidopsis thaliana have long been established as a model system for the study of organogenesis in plants. While ovule development in Arabidopsis can be followed by a variety of different imaging techniques, no experimental strategy presently exists that enables an easy and straightforward investigation of the morphology of internal tissues of the ovule with cellular resolution. Results We developed a protocol for rapid and robust confocal microscopy of fixed Arabidopsis ovules of all stages. The method combines clearing of fixed ovules in ClearSee solution with marking the cell outline using the cell wall stain SCRI Renaissance 2200 and the nuclei with the stain TO-PRO-3 iodide. We further improved the microscopy by employing a homogenous immersion system aimed at minimizing refractive index differences. The method allows complete inspection of the cellular architecture even deep within the ovule. Using the new protocol we were able to generate digital three-dimensional models of ovules of various stages. Conclusions The protocol enables the quick and reproducible imaging of fixed Arabidopsis ovules of all developmental stages. From the imaging data three-dimensional digital ovule models with cellular resolution can be rapidly generated using image analysis software, for example MorphographX. Such digital models will provide the foundation for a future quantitative analysis of ovule morphogenesis in a model species.


Author(s):  
Nauman Saeed ◽  
Sukunesan Sinnappan

Second Life is a three dimensional multi-user virtual environment within the Web 2.0 suite of applications which has gained wide spread popularity amongst educators in the recent years. However, limited empirical research has been reported on the adoption of Second Life, especially within higher education. The majority of technology adoption studies concentrate on analysing effects of utilitarian variables on adoption of a new technology however one should also focus on the hedonic effects when it comes to the adoption of Web 2.0 technologies which are highly interactive, involving, multi-user and entertaining. In this paper, the authors analyse the effect of utilitarian and hedonic behaviours on adoption of Second Life in a higher education context. To achieve this goal the authors propose an extension to Davis’ Technology Acceptance Model (TAM) by including emotional and imaginative responses as hedonic behaviours and usefulness, ease-of-use and computer self-efficacy as utilitarian behaviours. Empirical evaluation of the proposed model suggests that hedonic behaviours, emotional responses in particular, emerged as the strongest predictors of Second Life adoption. The study findings further suggest that traditional technology acceptance approaches may fall short in being able to explain the usage of today’s highly interactive, multi-user and entertainment-oriented technologies.


2021 ◽  
Vol 1 (1) ◽  
Author(s):  
Minjin Jeong ◽  
Karen E. Ocwieja ◽  
Dongjun Han ◽  
P. Ashley Wackym ◽  
Yichen Zhang ◽  
...  

Abstract Background COVID-19 is a pandemic respiratory and vascular disease caused by SARS-CoV-2 virus. There is a growing number of sensory deficits associated with COVID-19 and molecular mechanisms underlying these deficits are incompletely understood. Methods We report a series of ten COVID-19 patients with audiovestibular symptoms such as hearing loss, vestibular dysfunction and tinnitus. To investigate the causal relationship between SARS-CoV-2 and audiovestibular dysfunction, we examine human inner ear tissue, human inner ear in vitro cellular models, and mouse inner ear tissue. Results We demonstrate that adult human inner ear tissue co-expresses the angiotensin-converting enzyme 2 (ACE2) receptor for SARS-CoV-2 virus, and the transmembrane protease serine 2 (TMPRSS2) and FURIN cofactors required for virus entry. Furthermore, hair cells and Schwann cells in explanted human vestibular tissue can be infected by SARS-CoV-2, as demonstrated by confocal microscopy. We establish three human induced pluripotent stem cell (hiPSC)-derived in vitro models of the inner ear for infection: two-dimensional otic prosensory cells (OPCs) and Schwann cell precursors (SCPs), and three-dimensional inner ear organoids. Both OPCs and SCPs express ACE2, TMPRSS2, and FURIN, with lower ACE2 and FURIN expression in SCPs. OPCs are permissive to SARS-CoV-2 infection; lower infection rates exist in isogenic SCPs. The inner ear organoids show that hair cells express ACE2 and are targets for SARS-CoV-2. Conclusions Our results provide mechanistic explanations of audiovestibular dysfunction in COVID-19 patients and introduce hiPSC-derived systems for studying infectious human otologic disease.


2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Feng-Chen Bi ◽  
Xin-He Yang ◽  
Xiao-Yu Cheng ◽  
Wen-Bin Deng ◽  
Xiao-Li Guo ◽  
...  

AbstractAlzheimer’s disease (AD) is a neurodegenerative disease that currently cannot be cured by any drug or intervention, due to its complicated pathogenesis. Current animal and cellular models of AD are unable to meet research needs for AD. However, recent three-dimensional (3D) cerebral organoid models derived from human stem cells have provided a new tool to study molecular mechanisms and pharmaceutical developments of AD. In this review, we discuss the advantages and key limitations of the AD cerebral organoid system in comparison to the commonly used AD models, and propose possible solutions, in order to improve their application in AD research. Ethical concerns associated with human cerebral organoids are also discussed. We also summarize future directions of studies that will improve the cerebral organoid system to better model the pathological events observed in AD brains.


The Analyst ◽  
2020 ◽  
Vol 145 (21) ◽  
pp. 6937-6947
Author(s):  
Magdalena Flont ◽  
Elżbieta Jastrzębska ◽  
Zbigniew Brzózka

Three-dimensional (3D) cellular models of cancer tissue are necessary tools to analyze new anticancer drugs under in vitro conditions.


Sign in / Sign up

Export Citation Format

Share Document