scholarly journals Exogenous application of calcium to 24-epibrassinosteroid pre-treated tomato seedlings mitigates NaCl toxicity by modifying ascorbate–glutathione cycle and secondary metabolites

2018 ◽  
Vol 8 (1) ◽  
Author(s):  
Parvaiz Ahmad ◽  
Elsayed Fathi Abd_Allah ◽  
Mohammed Nasser Alyemeni ◽  
Leonard Wijaya ◽  
Pravej Alam ◽  
...  
PROTOPLASMA ◽  
2017 ◽  
Vol 255 (1) ◽  
pp. 79-93 ◽  
Author(s):  
Parvaiz Ahmad ◽  
Mohammed Abass Ahanger ◽  
Mohammed Nasser Alyemeni ◽  
Leonard Wijaya ◽  
Pravej Alam

2021 ◽  
Author(s):  
Ana Campayo ◽  
Stefania Savoi ◽  
Charles Romieu ◽  
Alberto José López-Jiménez ◽  
Kortes Serrano de la Hoz ◽  
...  

Abstract Ozonated water has become an innovative, environmentally friendly tool for controlling the development of fungal diseases in the vineyard or during grape postharvest conservation. However, little information is currently available on the effects of ozonated water sprayings on the grapevine physiology. Using the microvine model, we studied the transcriptomic response of leaf and fruit organs to this treatment. The response to ozone was observed to be organ and developmental stage-dependent, with a decrease of the number of DEGs (differentially expressed genes) in the fruit from the onset of ripening to later stages. The most highly up-regulated gene families were heat-shock proteins and chaperones. Other up-regulated genes were involved in oxidative stress homeostasis such as those of the ascorbate-glutathione cycle and glutathione S-transferases. In contrast, genes related to cell wall development and secondary metabolites (carotenoids, terpenoids, phenylpropanoids / flavonoids) were generally down-regulated after ozone treatment, mainly in the early stage of fruit ripening. This down-regulation may indicate a possible carbon competition favouring the re-establishment and maintenance of the redox homeostasis rather than the synthesis of secondary metabolites at the beginning of ripening, the most ozone responsive developmental stage.


2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Mohammad Shah Jahan ◽  
Sheng Shu ◽  
Yu Wang ◽  
Zheng Chen ◽  
Mingming He ◽  
...  

Abstract Background Melatonin is a pleiotropic signaling molecule that plays multifarious roles in plants stress tolerance. The polyamine (PAs) metabolic pathway has been suggested to eliminate the effects of environmental stresses. However, the underlying mechanism of how melatonin and PAs function together under heat stress largely remains unknown. In this study, we investigated the potential role of melatonin in regulating PAs and nitric oxide (NO) biosynthesis, and counterbalancing oxidative damage induced by heat stress in tomato seedlings. Results Heat stress enhanced the overproduction of reactive oxygen species (ROS) and damaged inherent defense system, thus reduced plant growth. However, pretreatment with 100 μM melatonin (7 days) followed by exposure to heat stress (24 h) effectively reduced the oxidative stress by controlling the overaccumulation of superoxide (O2•−) and hydrogen peroxide (H2O2), lowering the lipid peroxidation content (as inferred based on malondialdehyde content) and less membrane injury index (MII). This was associated with increased the enzymatic and non-enzymatic antioxidants activities by regulating their related gene expression and modulating the ascorbate–glutathione cycle. The presence of melatonin induced respiratory burst oxidase (RBOH), heat shock transcription factors A2 (HsfA2), heat shock protein 90 (HSP90), and delta 1-pyrroline-5-carboxylate synthetase (P5CS) gene expression, which helped detoxify excess ROS via the hydrogen peroxide-mediated signaling pathway. In addition, heat stress boosted the endogenous levels of putrescine, spermidine and spermine, and increased the PAs contents, indicating higher metabolic gene expression. Moreover, melatonin-pretreated seedlings had further increased PAs levels and upregulated transcript abundance, which coincided with suppression of catabolic-related genes expression. Under heat stress, exogenous melatonin increased endogenous NO content along with nitrate reductase- and NO synthase-related activities, and expression of their related genes were also elevated. Conclusions Melatonin pretreatment positively increased the heat tolerance of tomato seedlings by improving their antioxidant defense mechanism, inducing ascorbate–glutathione cycle, and reprogramming the PAs metabolic and NO biosynthesis pathways. These attributes facilitated the scavenging of excess ROS and increased stability of the cellular membrane, which mitigated heat-induced oxidative stress.


2020 ◽  
Vol 12 (24) ◽  
pp. 10649
Author(s):  
Zanib Nazar ◽  
Nudrat Aisha Akram ◽  
Muhammad Hamzah Saleem ◽  
Muhammad Ashraf ◽  
Shakeel Ahmed ◽  
...  

Several inorganic and organic compounds including glycine betaine (GB) are presently being used as an exogenous application to enhance tolerance in plants to different environmental stresses. The current study assessed to what extent exogenously applied GB could improve the gaseous exchange capacity and primary and secondary metabolites in two accessions (16178 and 16180) of safflower (Carthamus tinctorius L.) plants under drought stress. Three-week-old plants of both safflower accessions were subjected to well-watered (control) or water-deficit conditions (60% field capacity (FC)). Three levels of GB (control, 50 mM and 100 mM) were sprayed to the foliage of the control and stressed plants after one month of drought application. After two weeks of foliar application of GB, gas exchange characteristics and other biochemical parameters were determined. The results showed that water deficiency markedly suppressed plant biomass, chlorophyll contents, photosynthesis rate (A), water use efficiency (A/E), stomatal conductance (gs) and relative water contents (RWC) of both accessions of safflower, while it enhanced the levels of osmolytes (GB and proline), hydrogen peroxide (H2O2) and total phenolics. Foliar application of GB was effective in enhancing the plant biomass, chlorophyll contents, gs, sub-stomatal CO2 concentration (Ci), Ci/Ca ratio, osmolytes, H2O2, ascorbic acid (AsA), total phenolics and RWC in safflower plants under water shortage. Thus, exogenous application of GB could be used as an effective strategy to improve plant growth, photosynthetic attributes and secondary metabolites in safflower plants under water deficit conditions.


2012 ◽  
Vol 22 (1) ◽  
pp. 137-144 ◽  
Author(s):  
Weijie Jiang ◽  
Jie Bai ◽  
Xueyong Yang ◽  
Hongjun Yu ◽  
Yanpeng Liu

The application of plant growth regulators (PGRs), such as abscisic acid (ABA), putrescine (Put), and 2,4-epibrassinolide (EBR), has been shown to enhance a plant's resistance to various abiotic stresses. However, the protective effects of these PGRs on tomato (Solanum lycopersicum) seedlings under suboptimal temperature stress have not yet been evaluated. We also do not know the most effective method of application of PGRs for various tomato cultivars. We studied the effects of three rates of exogenous ABA, Put, or EBR in limiting damage from suboptimal temperature stress on two tomato cultivars, Zhongshu6 (considered sensitive to suboptimal temperatures) and SANTIAM (considered tolerant to suboptimal temperatures). Results showed that application of these PGRs at appropriate concentrations could effectively reduce the decline in the net photosynthetic rate (Pn) and the chlorophyll (Chl) content in leaves caused by suboptimal temperature stress in both ‘Zhongshu6’ and ‘SANTIAM’ and could promote an increase in organic osmolyte (proline and soluble sugar) contents and root 2,3,5-triphenyltetrazolium chloride (TTC)-reducing activity for ‘Zhongshu6’. However, these effects were inferior on ‘SANTIAM’. For both cultivars, the best treatment concentrations are 1 mm ABA, 0.1 mm Put, or 0.02 μM EBR. Results indicate that in tomato production, exogenous application of ABA, Put, or EBR at appropriate concentrations can effectively limit damage from suboptimal temperature stress.


Sign in / Sign up

Export Citation Format

Share Document