scholarly journals Understanding pseudo-albinism in sole (Solea senegalensis): a transcriptomics and metagenomics approach

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Patricia I. S. Pinto ◽  
Cláudia C. Guerreiro ◽  
Rita A. Costa ◽  
Juan F. Martinez-Blanch ◽  
Carlos Carballo ◽  
...  

Abstract Pseudo-albinism is a pigmentation disorder observed in flatfish aquaculture with a complex, multi-factor aetiology. We tested the hypothesis that pigmentation abnormalities are an overt signal of more generalised modifications in tissue structure and function, using as a model the Senegalese sole and two important innate immune barriers, the skin and intestine, and their microbiomes. Stereological analyses in pseudo-albino sole revealed a significantly increased mucous cell number in skin (P < 0.001) and a significantly thicker muscle layer and lamina propria in gut (P < 0.001). RNA-seq transcriptome analysis of the skin and gut identified 573 differentially expressed transcripts (DETs, FDR < 0.05) between pseudo-albino and pigmented soles (one pool/tissue from 4 individuals/phenotype). DETs were mainly linked to pigment production, skin structure and regeneration and smooth muscle contraction. The microbiome (16 S rRNA analysis) was highly diverse in pigmented and pseudo-albino skin but in gut had low complexity and diverged between the two pigmentation phenotypes. Quantitative PCR revealed significantly lower loads of Mycoplasma (P < 0.05) and Vibrio bacteria (P < 0.01) in pseudo-albino compared to the control. The study revealed that pseudo-albinism in addition to pigmentation changes was associated with generalised changes in the skin and gut structure and a modification in the gut microbiome.

2021 ◽  
Vol 22 (11) ◽  
pp. 5902
Author(s):  
Stefan Nagel ◽  
Claudia Pommerenke ◽  
Corinna Meyer ◽  
Hans G. Drexler

Recently, we documented a hematopoietic NKL-code mapping physiological expression patterns of NKL homeobox genes in human myelopoiesis including monocytes and their derived dendritic cells (DCs). Here, we enlarge this map to include normal NKL homeobox gene expressions in progenitor-derived DCs. Analysis of public gene expression profiling and RNA-seq datasets containing plasmacytoid and conventional dendritic cells (pDC and cDC) demonstrated HHEX activity in both entities while cDCs additionally expressed VENTX. The consequent aim of our study was to examine regulation and function of VENTX in DCs. We compared profiling data of VENTX-positive cDC and monocytes with VENTX-negative pDC and common myeloid progenitor entities and revealed several differentially expressed genes encoding transcription factors and pathway components, representing potential VENTX regulators. Screening of RNA-seq data for 100 leukemia/lymphoma cell lines identified prominent VENTX expression in an acute myelomonocytic leukemia cell line, MUTZ-3 containing inv(3)(q21q26) and t(12;22)(p13;q11) and representing a model for DC differentiation studies. Furthermore, extended gene analyses indicated that MUTZ-3 is associated with the subtype cDC2. In addition to analysis of public chromatin immune-precipitation data, subsequent knockdown experiments and modulations of signaling pathways in MUTZ-3 and control cell lines confirmed identified candidate transcription factors CEBPB, ETV6, EVI1, GATA2, IRF2, MN1, SPIB, and SPI1 and the CSF-, NOTCH-, and TNFa-pathways as VENTX regulators. Live-cell imaging analyses of MUTZ-3 cells treated for VENTX knockdown excluded impacts on apoptosis or induced alteration of differentiation-associated cell morphology. In contrast, target gene analysis performed by expression profiling of knockdown-treated MUTZ-3 cells revealed VENTX-mediated activation of several cDC-specific genes including CSFR1, EGR2, and MIR10A and inhibition of pDC-specific genes like RUNX2. Taken together, we added NKL homeobox gene activities for progenitor-derived DCs to the NKL-code, showing that VENTX is expressed in cDCs but not in pDCs and forms part of a cDC-specific gene regulatory network operating in DC differentiation and function.


2000 ◽  
Vol 7 (4) ◽  
pp. 714-716 ◽  
Author(s):  
Adriana Weinberg ◽  
Li Zhang ◽  
Darby Brown ◽  
Alejo Erice ◽  
Bruce Polsky ◽  
...  

ABSTRACT Factors that influence viability and function of cryopreserved peripheral blood mononuclear cells (PBMC) were identified on 54 samples from 27 AIDS Clinical Trial Units. PBMC viability ranged from 1 to 96% with a median of 70%, was higher in laboratories with experienced staff, and was not significantly associated with CD4 cell number. Function of cryopreserved PBMC, measured by lymphocyte proliferation, was associated with viability. Preparations with viability greater than or equal to 70% had consistent proliferative responses and were suitable for functional analyses.


2021 ◽  
Author(s):  
Rong Huang Huang ◽  
Tingting Li Li ◽  
Xi Yong Yong ◽  
Huling Wen Wen ◽  
Xing Zhou Zhou ◽  
...  

Abstract 15-Lipoxygenase-2(15-LOX-2) is thought to regulate inflammation and immunological function however, its mechanisms of action are still unclear. Furthermore, it has been reported that salidroside has anti inflammatory properties , but its role in macrophage function has not been understood yet In this study, we aimed to determine how 15-LOX-2 expression level s affect the function of macrophages and the effect of salidroside on 15-LOX-2 deficient macrophages We used multiple functional genetic strategies to determine 15-LOX-2 function in macrophages. 15-LOX-2 deficiency promotes phagocytosis and proliferation of macrophages and impairs their apoptosis Mechanistically, t he expression levels of cyclophilinB (CypB) were upregulated in 15-LOX-2 deficient Ana 1 macrophages, whereas those of caspase 3 were down regulated. Furthermore, RNA-seq analysis showed that inflammation, complement, and TNF-α signaling pathway s were all activated in 15-LOX-2 deficient Ana 1 macrophages. Treatment of 15-LOX-2 deficient macrophages with salidroside, a natural product derived from Rhodiola species, effectively reversed the effects of 15-LOX-2 deficiency on caspase 3 and CypB levels, as well as on apoptosis and proliferation. In conclusion, our study shows that there is a newly identified link between 15-LOX-2 deficiency and salidroside in regulating macrophage survival, proliferation, and function. Salidroside may be a promising therapeutic strategy for treating inflammation related diseases resulting from 15-LOX-2 deficiency.


2021 ◽  
Author(s):  
Jing Wang ◽  
Tianjie Chen ◽  
Xiaohua Zhang ◽  
Shulei Zhao

Abstract Long noncoding RNAs (lncRNAs) play important roles in the occurrence and development of many diseases and can be used as targets for diagnosis and treatment. However, the expression and function of lncRNAs in the injury and repair of acute pancreatitis (AP) are unclear. To decipher lncRNAs’ regulatory roles in AP, we reanalyzed an RNA-seq dataset of 24 pancreatic tissues, including those of normal control mice (BL), those 7 days after mild AP (D7), and those 14 days after mild AP (D14). The results showed significant differences in lncRNA and mRNA expression of D7/D14 groups compared with the control group. Co-expression analysis showed that differentially expressed (DE) lncRNAs were closely related to immunity- and inflammation-related pathways by trans-regulating mRNA expression. The lncRNA–mRNA network showed that the lncRNAs Dancer, Gmm20488, Terc, Snhg3, and Snhg20 were significantly correlated with AP pathogenesis. WGCNA and cis regulation analysis also showed that AP repair-associated lncRNAs were correlated with extracellular and inflammation-related genes, which affect the repair and regeneration of pancreatic injury after AP. In conclusion, the systemic dysregulation of lncRNAs is strongly involved in remodeling AP’s gene expression regulatory network, and the lncRNA–mRNA expression network could identify targets for AP treatment and damage repair.


Author(s):  
Marine Lambert ◽  
Abderrahim Benmoussa ◽  
Patrick Provost

The advent of RNA-sequencing (RNA-Seq) technologies has markedly improved our knowledge and expanded the compendium of small non-coding RNAs, most of which derive from the processing of longer RNA precursors. In this review article, we will discuss about the biogenesis and function of small non-coding RNAs derived from eukaryotic ribosomal RNA (rRNA), called rRNA fragments (rRFs), and their potential role(s) as regulator of gene expression. This relatively new class of ncRNAs remained poorly investigated and underappreciated until recently, due mainly to the a priori exclusion of rRNA sequences&mdash;because of their overabundance&mdash;from RNA-Seq datasets. The situation surrounding rRFs resembles that of microRNAs (miRNAs), which used to be readily discarded from further analyses, for more than five decades, because we could not believe that RNA of such a short length could bear biological significance. As if we had not yet learned our lesson not to restrain our investigative, scientific mind from challenging widely accepted beliefs or dogmas, and from looking for the hidden treasures in the most unexpected places.


2019 ◽  
Author(s):  
Ru-pin Alicia Chi ◽  
Tianyuan Wang ◽  
Nyssa Adams ◽  
San-pin Wu ◽  
Steven L. Young ◽  
...  

ABSTRACTContextPoor uterine receptivity is one major factor leading to pregnancy loss and infertility. Understanding the molecular events governing successful implantation is hence critical in combating infertility.ObjectiveTo define PGR-regulated molecular mechanisms and epithelial roles in receptivity.DesignRNA-seq and PGR-ChIP-seq were conducted in parallel to identify PGR-regulated pathways during the WOI in endometrium of fertile women.SettingEndometrial biopsies from the proliferative and mid-secretory phases were analyzed.Patients or Other ParticipantsParticipants were fertile, reproductive aged (18-37) women with normal cycle length; and without any history of dysmenorrhea, infertility, or irregular cycles. In total, 42 endometrial biopsies obtained from 42 women were analyzed in this study.InterventionsThere were no interventions during this study.Main Outcome MeasuresHere we measured the alterations in gene expression and PGR occupancy in the genome during the WOI, based on the hypothesis that PGR binds uterine chromatin cycle-dependently to regulate genes involved in uterine cell differentiation and function.Results653 genes were identified with regulated PGR binding and differential expression during the WOI. These were involved in regulating inflammatory response, xenobiotic metabolism, EMT, cell death, interleukin/STAT signaling, estrogen response, and MTORC1 response. Transcriptome of the epithelium identified 3,052 DEGs, of which 658 were uniquely regulated. Transcription factors IRF8 and MEF2C were found to be regulated in the epithelium during the WOI at the protein level, suggesting potentially important functions that are previously unrecognized.ConclusionPGR binds the genomic regions of genes regulating critical processes in uterine receptivity and function.PrécisUsing a combination of RNA-seq and PGR ChIP-seq, novel signaling pathways and epithelial regulators were identified in the endometrium of fertile women during the window of implantation.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Savannah G Brovero ◽  
Julia C Fortier ◽  
Hongru Hu ◽  
Pamela C Lovejoy ◽  
Nicole R Newell ◽  
...  

Drosophila reproductive behaviors are directed by fruitless neurons. A reanalysis of genomic studies shows that genes encoding dpr and DIP Immunoglobulin superfamily (IgSF) members are expressed in fru P1 neurons. We find that each fru P1 and dpr/DIP (fru P1 ∩ dpr/DIP) overlapping expression pattern is similar in both sexes, but there are dimorphisms in neuronal morphology and cell number. Behavioral studies of fru P1 ∩ dpr/DIP perturbation genotypes indicates that the mushroom body functions together with the lateral protocerebral complex to direct courtship behavior. A single-cell RNA-seq analysis of fru P1 neurons shows that many DIPs have high expression in a small set of neurons, whereas the dprs are often expressed in a larger set of neurons at intermediate levels, with a myriad of dpr/DIP expression combinations. Functionally, we find that perturbations of sex hierarchy genes and of DIP-ε change the sex-specific morphologies of fru P1 ∩ DIP-α neurons.


1999 ◽  
Vol 129 (8) ◽  
pp. 1510-1517 ◽  
Author(s):  
Harry D. Dawson ◽  
Nan-Qian Li ◽  
Kathleen L. DeCicco ◽  
Julie A. Nibert ◽  
A. Catharine Ross

Sign in / Sign up

Export Citation Format

Share Document