scholarly journals PKN1 kinase-negative knock-in mice develop splenomegaly and leukopenia at advanced age without obvious autoimmune-like phenotypes

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Salman Mahmud Siddique ◽  
Koji Kubouchi ◽  
Yuka Shinmichi ◽  
Nana Sawada ◽  
Reiko Sugiura ◽  
...  

Abstract Protein kinase N1 (PKN1) knockout (KO) mice spontaneously form germinal centers (GCs) and develop an autoimmune-like disease with age. Here, we investigated the function of PKN1 kinase activity in vivo using aged mice deficient in kinase activity resulting from the introduction of a point mutation (T778A) in the activation loop of the enzyme. PKN1[T778A] mice reached adulthood without external abnormalities; however, the average spleen size and weight of aged PKN1[T778A] mice increased significantly compared to aged wild type (WT) mice. Histologic examination and Southern blot analyses of spleens showed extramedullary hematopoiesis and/or lymphomagenesis in some cases, although without significantly different incidences between PKN1[T778A] and WT mice. Additionally, flow cytometry revealed increased numbers in B220+, CD3+, Gr1+ and CD193+ leukocytes in the spleen of aged PKN1[T778A] mice, whereas the number of lymphocytes, neutrophils, eosinophils, and monocytes was reduced in the peripheral blood, suggesting an advanced impairment of leukocyte trafficking with age. Moreover, aged PKN1[T778A] mice showed no obvious GC formation nor autoimmune-like phenotypes, such as glomerulonephritis or increased anti-dsDNA antibody titer, in peripheral blood. Our results showing phenotypic differences between aged Pkn1-KO and PKN1[T778A] mice may provide insight into the importance of PKN1-specific kinase-independent functions in vivo.

1995 ◽  
Vol 181 (5) ◽  
pp. 1893-1898 ◽  
Author(s):  
V M Eng ◽  
B D Car ◽  
B Schnyder ◽  
M Lorenz ◽  
S Lugli ◽  
...  

Interleukin (IL)-12 synergizes with other cytokines to stimulate the proliferation and differentiation of early hematopoietic progenitors in vitro. However, in vivo administration of IL-12 decreases peripheral blood counts and bone marrow hematopoiesis. Here, we used interferon (IFN) gamma receptor-deficient (IFN gamma R-/-) mice to investigate whether the in vivo inhibition of hematopoiesis by IL-12 is indirectly mediated by IL-12-induced IFN-gamma. IL-12 administered for 4 d (1 microgram/mouse per day) resulted in lower peripheral blood counts and a 2-fold decrease in bone marrow cellularity in wild-type mice, but not in IFN gamma R-/- mice. Bone marrow hematopoietic progenitors were decreased after IL-12 treatment in wild-type mice, but rather increased in IFN gamma R-/- mice. Splenic cellularity was 2.3-fold higher after IL-12 administration in wild-type mice, largely due to natural killer (NK) cell and macrophage infiltration together with some extramedullary hematopoiesis. In IFN gamma R-/- mice, spleen cellularity was less increased, there were fewer infiltrating NK cells, but a strong extramedullary hematopoiesis. Thus, alterations mediated by IL-12-induced IFN-gamma include reduction in bone marrow cellularity and hematopoietic progenitors, as well as pronounced splenomegaly, largely caused by NK cell infiltration. In the absence of IFN-gamma signaling, IL-12 promotes hematopoiesis, consistent with its in vitro activities.


2016 ◽  
Author(s):  
Maureen M. Mundia ◽  
Alissa C. Magwood ◽  
Mark D. Baker

ABSTRACTIn this study, we utilized mouse hybridoma cell lines stably expressing ectopic wild-type Rad51, or the Rad51-K133A and Rad51-K133R catalytic mutants deficient in ATP binding and ATP hydrolysis, respectively, to investigate effects on the Rad51 nucleoprotein filament in vivo. Immunoprecipitation studies reveal interactions between ectopic wild-type Rad51, Rad51-K133A and Rad51-K133R and endogenous Rad51, Brca2 and p53 proteins. Importantly, the expression of Rad51-K133A and Rad51-K133R catalytic mutants (but not wild-type Rad51) targets endogenous Rad51, Brca2 and p53 proteins for proteasome-mediated degradation. Expression of Rad51-K133R significantly reduces nascent DNA synthesis (3’ polymerization) during homologous recombination (HR), but the effects of Rad51-K133A on 3’ polymerization are considerably more severe. Provision of additional wild-type Rad51 in cell lines expressing Rad51-K133A or Rad51-K133R does not restore diminished levels of endogenous Brca2, Rad51 or p53, nor restore the deficiency in 3’ polymerization. Cells expressing Rad51-K133A are also significantly reduced in their capacity to drive strand exchange through regions of heterology. Our results reveal an interesting mechanistic dichotomy in the way mutant Rad51-K133A and Rad51-K133R proteins influence 3’ polymerization and provide novel insight into the mechanism of their dominant-negative phenotypes.


1999 ◽  
Vol 181 (10) ◽  
pp. 3010-3017 ◽  
Author(s):  
Heather A. Cook ◽  
Carol A. Kumamoto

ABSTRACT SecB is a cytosolic protein required for rapid and efficient export of particular periplasmic and outer membrane proteins inEscherichia coli. SecB promotes export by stabilizing newly synthesized precursor proteins in a nonnative conformation and by targeting the precursors to the inner membrane. Biochemical studies suggest that SecB facilitates precursor targeting by binding to the SecA protein, a component of the membrane-embedded translocation apparatus. To gain more insight into the functional interaction of SecB and SecA, in vivo, mutations in the secA locus that compensate for the export defect caused by the secBmissense mutation secBL75Q were isolated. Two suppressors were isolated, both of which led to the overproduction of wild-type SecA protein. In vivo studies demonstrated that the SecBL75Q mutant protein releases precursor proteins at a lower rate than does wild-type SecB. Increasing the level of SecA protein in the cell was found to reverse this slow-release defect, indicating that overproduction of SecA stimulates the turnover of SecBL75Q-precursor complexes. These findings lend additional support to the proposed pathway for precursor targeting in which SecB promotes targeting to the translocation apparatus by binding to the SecA protein.


2021 ◽  
Vol 23 (Supplement_6) ◽  
pp. vi206-vi206
Author(s):  
Angad Beniwal ◽  
Saket Jain ◽  
Sumedh Shah ◽  
Sabraj Gill ◽  
Garima Yagnik ◽  
...  

Abstract Among clinical analyses, elevated neutrophil-lymphocyte ratio has been correlated with poor outcomes of glioblastoma patients independent of other prognostic factors. Additionally, our flow cytometric studies of primary patient samples found neutrophil percentage to be significantly higher in higher-grade glioma versus lower-grade glioma. Tumor-associated neutrophils (TANs) comprise less than 2% of the glioblastoma microenvironment. While TANs were initially considered passive bystanders due to their short-lived nature, investigation of TANs in other cancers revealed distinct pro-tumoral roles. Therefore, we transcriptomically characterized glioblastoma TANs and defined their oncologic effects. Transcriptomic analysis of patient-matched TANs versus peripheral blood neutrophils revealed that functionally quiescent circulating neutrophils infiltrate IDH1-wild type glioblastoma via leukotriene B4 chemoattraction, where tumor cells morphologically and transcriptomically activate them to become TANs. Single-cell RNA-sequencing of patient-matched TANs and peripheral blood neutrophils revealed a subset of tumor-activated neutrophils which adopt a pro-tumoral secretory phenotype, marked by activation of the IL-17 signaling pathway and high osteopontin production. Using immunofluorescence stains of primary patient glioblastoma sections, we demonstrated that activated, myeloperoxidase-positive TANs reside in the perivascular niche of glioblastoma in close proximity to glioblastoma stem-like cells (GSCs) and CD31-positive endothelial cells. Further analysis in culture demonstrated that TAN-secreted osteopontin drives the formation, self-renewal, and proliferation of GSC-containing neurospheres. These results were validated using a syngeneic stem cell-derived IDH1-wild type murine glioblastoma model in vivo. Thus, while TANs are rare in glioblastoma, their enrichment in the glioblastoma perivascular niche uniquely positions them to support the GSCs that are crucial to therapeutic resistance of GBM.


2007 ◽  
Vol 27 (23) ◽  
pp. 8049-8064 ◽  
Author(s):  
Michael J. Muskus ◽  
Fabian Preuss ◽  
Jin-Yuan Fan ◽  
Edward S. Bjes ◽  
Jeffrey L. Price

ABSTRACT A mutation (K38R) which specifically eliminates kinase activity was created in the Drosophila melanogaster ckI gene (doubletime [dbt]). In vitro, DBT protein carrying the K38R mutation (DBTK/R) interacted with Period protein (PER) but lacked kinase activity. In cell culture and in flies, DBTK/R antagonized the phosphorylation and degradation of PER, and it damped the oscillation of PER in vivo. Overexpression of short-period, long-period, or wild-type DBT in flies produced the same circadian periods produced by the corresponding alleles of the endogenous gene. These mutations therefore dictate an altered “set point” for period length that is not altered by overexpression. Overexpression of the DBTK/R produced effects proportional to the titration of endogenous DBT, with long circadian periods at lower expression levels and arrhythmicity at higher levels. This first analysis of adult flies with a virtual lack of DBT activity demonstrates that DBT's kinase activity is necessary for normal circadian rhythms and that a general reduction of DBT kinase activity does not produce short periods.


2014 ◽  
Vol 83 (1) ◽  
pp. 396-404 ◽  
Author(s):  
Jonathan F. Holt ◽  
Megan R. Kiedrowski ◽  
Kristi L. Frank ◽  
Jing Du ◽  
Changhui Guan ◽  
...  

Enterococcus faecalisis a commensal and pathogen of humans and insects. InManduca sexta,E. faecalisis an infrequent member of the commensal gut community, but its translocation to the hemocoel results in a commensal-to-pathogen switch. To investigateE. faecalisfactors required for commensalism, we identifiedE. faecalisgenes that are upregulated in the gut ofM. sextausing recombinase-basedin vivoexpression technology (RIVET). The RIVET screen produced 113 clones, from which we identified 50 genes that are more highly expressed in the insect gut than in culture. The most frequently recovered gene was locus OG1RF_11582, which encodes a 6-phosphogluconolactonase that we designatedpglA. ApglAdeletion mutant was impaired in both pathogenesis and gut persistence inM. sextaand produced enhanced biofilms compared with the wild type in anin vitropolystyrene plate assay. Mutation of four other genes identified by RIVET did not affect persistence in caterpillar guts but led to impaired pathogenesis. This is the first identification of genetic determinants forE. faecaliscommensal and pathogenic interactions withM. sexta. Bacterial factors identified in this model system may provide insight into colonization or persistence in other host-associated microbial communities and represent potential targets for interventions to preventE. faecalisinfections.


mSphere ◽  
2016 ◽  
Vol 1 (5) ◽  
Author(s):  
Armando Arias ◽  
Lucy Thorne ◽  
Elsa Ghurburrun ◽  
Dalan Bailey ◽  
Ian Goodfellow

ABSTRACT Virus replication fidelity and hence the intrahost genetic diversity of viral populations are known to be intricately linked to viral pathogenesis and tropism as well as to immune and antiviral escape during infection. In this study, we investigated whether changes in replication fidelity can impact the ability of a virus to transmit between susceptible hosts by the use of a mouse model for norovirus. We show that a variant encoding a high-fidelity polymerase is transmitted less efficiently between mice than the wild-type strain. This constitutes the first experimental demonstration that the polymerase fidelity of viruses can impact transmission of infection in their natural hosts. These results provide further insight into potential reasons for the global emergence of pandemic human noroviruses that display alterations in the replication fidelity of their polymerases compared to nonpandemic strains. Intrahost genetic diversity and replication error rates are intricately linked to RNA virus pathogenesis, with alterations in viral polymerase fidelity typically leading to attenuation during infections in vivo. We have previously shown that norovirus intrahost genetic diversity also influences viral pathogenesis using the murine norovirus model, as increasing viral mutation frequency using a mutagenic nucleoside resulted in clearance of a persistent infection in mice. Given the role of replication fidelity and genetic diversity in pathogenesis, we have now investigated whether polymerase fidelity can also impact virus transmission between susceptible hosts. We have identified a high-fidelity norovirus RNA-dependent RNA polymerase mutant (I391L) which displays delayed replication kinetics in vivo but not in cell culture. The I391L polymerase mutant also exhibited lower transmission rates between susceptible hosts than the wild-type virus and, most notably, another replication defective mutant that has wild-type levels of polymerase fidelity. These results provide the first experimental evidence that norovirus polymerase fidelity contributes to virus transmission between hosts and that maintaining diversity is important for the establishment of infection. This work supports the hypothesis that the reduced polymerase fidelity of the pandemic GII.4 human norovirus isolates may contribute to their global dominance. IMPORTANCE Virus replication fidelity and hence the intrahost genetic diversity of viral populations are known to be intricately linked to viral pathogenesis and tropism as well as to immune and antiviral escape during infection. In this study, we investigated whether changes in replication fidelity can impact the ability of a virus to transmit between susceptible hosts by the use of a mouse model for norovirus. We show that a variant encoding a high-fidelity polymerase is transmitted less efficiently between mice than the wild-type strain. This constitutes the first experimental demonstration that the polymerase fidelity of viruses can impact transmission of infection in their natural hosts. These results provide further insight into potential reasons for the global emergence of pandemic human noroviruses that display alterations in the replication fidelity of their polymerases compared to nonpandemic strains.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 258-258
Author(s):  
David Motto ◽  
Weirui Zhang ◽  
Guojing Zhu ◽  
Jonathon Homeister ◽  
Han-Mou Tsai ◽  
...  

Abstract Thrombotic Thrombocytopenic Purpura (TTP) is a life threatening systemic illness characterized by the formation of platelet-rich thrombi in the microcirculation and the clinical pentad of fever, hemolytic anemia, thrombocytopenia, neurological symptoms, and renal dysfunction. TTP is associated with ultra-large von Willebrand Factor multimers (UL-VWF) in the circulation due to deficiency of the ADAMTS13 metalloprotease. ADAMTS13 gene mutations account for most if not all cases of familial TTP, and autoantibodies to ADAMTS13 underlie most cases of acquired TTP. To further explore the pathogenesis of TTP in vivo, ADAMTS13 deficient mice were generated by gene targeting to remove exons 1–6 which encode most of the protease domain of ADAMTS13. Although the resulting homozygous null mice (Adamts13−/−) have lost all specific VWF-cleaving protease activity (< 1% of control), embryonic development is normal, and the null mice are born at the expected Mendelian frequency. Analysis of baseline hematologic parameters and peripheral blood smears revealed no difference between Adamts13−/− mice and wild-type littermates, with no evidence for thrombocytopenia or microangiopathic hemolytic anemia. Pathologic survey of multiple tissues revealed only normal histology and no evidence for platelet or VWF-rich thrombi in the vasculature. Despite the absence of VWF-cleaving protease activity, plasma from wild-type and ADAMTS13-deficient mice exhibited identical VWF multimer size distributions. However, VWF multimers from both wild-type and Adamts13−/− mice were observed to be considerably larger than those from normal human plasma, and equivalent in size to UL-VWF seen in plasma from familial TTP patients. Challenge of Adamts13−/− mice by injection with endotoxin, and genetic crosses to mice with markedly elevated VWF levels (CASA/Rk), failed to induce findings consistent with TTP. However, treatment with verotoxin-2 (a bacterial endothelial toxin important in the pathogenesis of the hemolytic uremic syndrome), caused thrombocytopenia in 6 of 11 Adamts13−/− mice (vs. 3 of 11 wild-type controls, p < 0.07) and mortality at 6 days in 9 of 11 Adamts13−/− mice (vs. 6 of 11 controls, p < 0.02). Examination of peripheral blood from one of the Adamts13−/− mice at 8 days following verotoxin administration demonstrated marked microangiopathic changes. In conclusion, mice with targeted disruption of the Adamts13 gene do not develop TTP spontaneously, suggesting the requirement for additional environmental triggers or genetic modifiers. Though some humans with congenital ADAMTS13 deficiency have been reported to remain asymptomatic for many years, the increased size of the baseline VWF multimer distribution in mice may indicate a higher threshold for VWF-ADAMTS13 interaction which may be protective for TTP. Our results also suggest that microbial-derived toxins, or other sources of endothelial injury, may be one of the key environmental triggers responsible for the lack of spontaneous TTP findings in the ADAMTS13-deficient mice, and possibly for the intermittent symptoms seen in humans.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 780-780
Author(s):  
Andrew G. Muntean ◽  
Liyan Pang ◽  
Mortimer Poncz ◽  
Steve Dowdy ◽  
Gerd Blobel ◽  
...  

Abstract Megakaryocytes, which fragment to give rise to platelets, undergo a unique form of cell cycle, termed endomitosis, to become polyploid and terminally differentiate. During this process, cells transverse the cell cycle but the late stages of mitosis are bypassed to lead to accumulation of DNA up to 128N. While the mechanisms of polyploidization in megakaryocytes are poorly understood, a few cell cycle regulators, such as cyclin D3, have been implicated in this process. Hematopoietic transcription factors, including GATA-1 and RUNX1 are also essential for polyploidization, as both GATA1-deficient and RUNX1-null megakaryocytes undergo fewer rounds of endomitosis. Interestingly, GATA-1 deficient megakaryocytes are also smaller than their wild-type counterparts. However, the link between transcription factors and the growth and polyploidization of megakaryocytes has not been established. In our studies to identify key downstream targets of GATA-1 in the megakaryocyte lineage, we discovered that the cell cycle regulators cyclin D1 and p16 were aberrantly expressed in the absence of GATA-1: cyclin D1 expression was reduced nearly 10-fold, while that of p16ink4a was increased 10-fold. Luciferase reporter assays revealed that GATA-1, but not the leukemic isoform GATA-1s, promotes cyclinD1 expression. Consistent with these observations, megakaryocytes that express GATA-1s in place of full-length GATA-1 are smaller than their wild-type counterparts. Chromatin immunoprecipitation studies revealed that GATA-1 is bound to the cyclin D1 promoter in vivo, in primary fetal liver derived megakaryocytes. In contrast, GATA-1 is not associated with the cyclin D1 promoter in erythroid cells, which do not become polyploid. Thus, cyclin D1 is a bona fide GATA-1 target gene in megakaryocytes. To investigate whether restoration of cyclin D1 expression could rescue the polyploidization defect in GATA-1 deficient cells, we infected fetal liver progenitors isolated from GATA-1 knock-down mice with retroviruses harboring the cyclin D1 cDNA (and GFP via an IRES element) or GFP alone. Surprisingly, expression of cyclin D1 did not increase the extent of polyploidization of the GATA-1 deficient megakaryocytes. However, co-overexpression of cyclin D1 and Cdk4 resulted in a dramatic increase in polyploidization. Consistent with the model that cyclinD:Cdk4/6 also regulates cellular metabolism, we observed that the size of the doubly infected cells was also significantly increased. Finally, in support of our model that cyclin D:Cdk4/6 kinase activity is essential for endomitosis, we discovered that introduction of wild-type p16 TAT fusion protein, but not a mutant that fails to interact with Cdk4/6, significantly blocked polyploidization of primary fetal liver derived megakaryocytes. Taken together, our data reveal that the process of endomitosis and cell growth relies heavily on cyclinD:Cdk4/6 kinase activity and that the maturation defects in GATA-1 deficient megakaryocytes are due, in part, to reduced Cyclin D1 and increase p16 expression.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 512-512
Author(s):  
Anupriya Agarwal ◽  
Ryan J Meckenzie ◽  
Thomas O'Hare ◽  
Kavin B Vasudevan ◽  
Dorian H LaTocha ◽  
...  

Abstract Abstract 512 Background: BCR-ABL promotes cell cycle progression by interfering with the regulatory functions of p27, a cyclin dependent kinase (Cdk) inhibitor and tumor suppressor. We have previously shown that BCR-ABL kinase activity promotes degradation of nuclear p27 (Agarwal, A. et al. Blood 2008). Additionally, in primary CML cells, p27 is mislocalized to the cytoplasm, thereby relieving Cdks from p27 inhibition. Results from studies of solid tumors show that cytoplasmic p27 can actively contribute to oncogenesis, raising the question of whether cytoplasmic p27 in CML cells may actively promote leukemogenesis rather than merely compromise Cdk inhibition. We hypothesize that BCR-ABL disrupts p27 function in a dual manner by reducing nuclear p27, where p27 normally serves as a tumor suppressor, and by increasing cytoplasmic p27, where it might have oncogenic activity. Experimental Approach and Results: Immunoblotting of nuclear and cytoplasmic lysates of CD34+ cells from 11 CML patients revealed that p27 localization is predominantly cytoplasmic in the majority of patients (10/11; 91%) irrespective of disease phase, while p27 was mostly nuclear in normal controls. Similar results were obtained by immunofluorescence microscopy. Imatinib treatment increased nuclear p27 suggesting that nuclear p27 levels are regulated by BCR-ABL kinase activity. However, imatinib does not alter cytoplasmic p27 levels, suggesting that cytoplasmic mislocalization of p27 is a kinase-independent effect of BCR-ABL. Kinase-independent regulation of cytoplasmic p27 localization was also tested by immunofluorescence microscopy of p27−/− MEFs engineered to express active or kinase-dead BCR-ABL in combination with wild-type p27. In these cells cytoplasmic p27 abundance was increased both by kinase-active or kinase-dead BCR-ABL as compared to the vector control. To interrogate the role of p27 in vivo we retrovirally transduced p27+/+ or p27−/− bone marrow with BCR-ABL-GFP retrovirus and sorted Lin-/c-Kit+/Sca-I+ cells by FACS, allowing for injection of exactly matched numbers of BCR-ABL-expressing GFP+ cells (5000/animal). Median survival was significantly reduced for recipients of p27−/− marrow as compared to p27+/+ controls (34 days vs. 93 days p<0.0001). Recipients of p27−/− marrow also exhibited significantly increased white blood cell (4.5-fold) and platelet counts (3.9-fold) as well as spleen size (6-fold) and liver size (1.6-fold). Accordingly, there was more pronounced leukemic infiltration of myeloid precursors on histopathology as compared to controls. An in vivo competition experiment performed by injecting equal numbers of BCR-ABL-transduced p27−/− and p27+/+ marrow cells in congenic recipients resulted in leukemias in recipient mice (N=8) that were derived exclusively from p27−/− cells. In total, these results suggest that the net function of p27 in CML is tumor suppressive. To functionally dissect the role of nuclear and cytoplasmic p27, we used p27T187A transgenic mice (in which nuclear p27 degradation is reduced) and p27S10A mice (in which p27 export to the cytoplasm is reduced resulting in predominantly nuclear p27). Mice of matched genetic background were used as p27WT controls in CML retroviral transduction/transplantation experiments. In both cases, survival was prolonged compared to controls: 25 vs. 21 days for p27T187A (p=0.05) and 32 vs. 23 days for p27S10A (p=0.01). This suggests that stabilization of nuclear p27 (p27T187A) and more significantly lack of cytoplasmic p27 (p27S10A) attenuate BCR-ABL-mediated leukemogenesis. Consistent with this, autopsy and histopathological analysis revealed reduced hepatosplenomegaly (p27T187A mice) and improved cell differentiation with a relative increase of mature neutophils (p27S10A mice) as compared to wild-type controls. Conclusions: These results provide in vivo evidence that p27 has genetically separable dual roles in CML as both a nuclear tumor suppressor and cytoplasmic oncogene. A kinase-independent activity of BCR-ABL contributes to leukemogenesis through aberrant p27 localization to the cytoplasm. This oncogene activity is independent from the kinase-dependent degradation of nuclear p27. We speculate that the inability of tyrosine kinase inhibitors to reverse cytoplasmic p27 mislocalization may contribute to disease persistence despite effective inhibition of BCR-ABL kinase activity. Disclosures: Deininger: Novartis: Consultancy; BMS: Consultancy; Ariad: Consultancy; genzyme: Research Funding.


Sign in / Sign up

Export Citation Format

Share Document