scholarly journals Synthesis and investigation of SiO2-MgO coated MWCNTs and their potential application

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Krisztian Nemeth ◽  
Nikolett Varro ◽  
Balazs Reti ◽  
Peter Berki ◽  
Balazs Adam ◽  
...  

Abstract In the present publication, multiwalled carbon nanotubes (MWCNT) coated with SiO2–MgO nanoparticles were successfully fabricated via sol–gel method to facilitate their incorporation into polymer matrices. Magnesium acetate tetrahydrate and tetraethyl orthosilicate were used as precursors. The coated MWCNTs were characterized by transmission electron microscopy (TEM), X–ray diffraction (XRD) and Raman spectroscopy methods. These investigation techniques verified the presence of the inorganic nanoparticles on the surface of MWCNTs. Surface coated MWCNTs were incorporated into polyamide (PA), polyethylene (PE) and polypropylene (PP) matrices via melt blending. Tensile test and differential scanning calorimetry (DSC) investigations were performed on SiO2–MgO/MWCNT polymer composites to study the reinforcement effect on the mechanical and thermal properties of the products. The obtained results indicate that depending on the type of polymer, the nanoparticles differently influenced the Young’s modulus of polymers. Generally, the results demonstrated that polymers treated with SiO2-MgO/MWCNT nanoparticles have higher modulus than neat polymers. DSC results showed that nanoparticles do not change the melting and crystallization behavior of PP significantly. According to the obtained results, coated MWCNTs are promising fillers to enhance mechanical properties of polymers.

Open Physics ◽  
2011 ◽  
Vol 9 (2) ◽  
Author(s):  
Anna Biedunkiewicz ◽  
Paweł Figiel ◽  
Urszula Gabriel ◽  
Marta Sabara ◽  
Stanisław Lenart

AbstractIn this work, the results of investigations of manufacturing ceramic materials on the basis of Ti, B, C and N containing systems are presented. The nanocrystalline ceramics were synthesized using a non-hydrolytic sol-gel method. The process was carried out in two stages. In the first low-temperature stage the precursor was obtained. The synthesis of ceramic phases, however, was conducted in the second high-temperature stage, in an argon atmosphere. Depending on the initial composition of the mixtures, the temperature and the time, the following products were obtained: TiCx, TiCxN1−x, TiB2 and B4C.The course of the process was investigated by thermogravimetric and differential scanning calorimetry methods (TG-DSC) coupled with mass spectrometry (MS). The solid state products were identified with use of X-ray diffraction (XRD). The size of the crystallites was estimated by the Scherrer method. The structure and morphology images of nanocrystalline powders were obtained using scanning electron microscopy (SEM) and transmission electron microscopy (TEM).


2018 ◽  
Vol 34 (6) ◽  
pp. 2716-2720
Author(s):  
Onanong Cheerarot ◽  
Yodthong Baimark

The stereocomplex polylactides (scPLAs) of the asymmetric poly(L-lactide)(PLLA)/poly(D-lactide) (PDLA) ratios from 80:20 to 60:40 were prepared via the simple melt blending method using an internal mixer at 200°C. An organo-modified clay, Cloisite® 30B, was used for nanocomposite preparation. The formation of the stereocomplex and nanocomposite structures were confirmed by differential scanning calorimetry (DSC), wide-angle X-ray diffraction (WAXD) and transmission electron microscopy (TEM). An increase in the PDLA content could enhance the stereocomplex formation. The presence of Cloisite®30B decreased the melting temperature and crystallinity of the blends. This was due to the thinner crystalline size generated and/or more disordered crystals.


Metals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 218
Author(s):  
Xianjie Yuan ◽  
Xuanhui Qu ◽  
Haiqing Yin ◽  
Zaiqiang Feng ◽  
Mingqi Tang ◽  
...  

This present work investigates the effects of sintering temperature on densification, mechanical properties and microstructure of Al-based alloy pressed by high-velocity compaction. The green samples were heated under the flow of high pure (99.99 wt%) N2. The heating rate was 4 °C/min before 315 °C. For reducing the residual stress, the samples were isothermally held for one h. Then, the specimens were respectively heated at the rate of 10 °C/min to the temperature between 540 °C and 700 °C, held for one h, and then furnace-cooled to the room temperature. Results indicate that when the sintered temperature was 640 °C, both the sintered density and mechanical properties was optimum. Differential Scanning Calorimetry, X-ray diffraction of sintered samples, Scanning Electron Microscopy, Energy Dispersive Spectroscopy, and Transmission Electron Microscope were used to analyse the microstructure and phases.


2013 ◽  
Vol 634-638 ◽  
pp. 2150-2154 ◽  
Author(s):  
Rita Sundari ◽  
Tang Ing Hua ◽  
M. Rusli Yosfiah

A citric acid anionic surfactant has been applied for nano manganese ferrite (MnFeO3) fabrication using sol gel method. The calcinations have been varied for 300, 600 and 800oC. The UVDR (UV-Vis Diffused Reflectance) analysis shows a high absorptive band gap after 400 nm for the 600oC calcinated MnFeO3. The DTA (Differential Thermal Analysis) profiles exhibit remarkably trapped volatile matters (H2O, CO2, and NO2) in the fabricated MnFeO3 under sol gel heat treatment at 100oC and the peaks disappeared as the calcination increased to 600oC. As the temperature elevated from 100 to 300oC, the absorption peaks of volatile components are disappeared as demonstrated clearly by the FTIR (Fourier Transform Infrared) spectra of the fabricated material, which 3393 cm-1 corresponded to OH group, 1624 cm-1 to CO group, and 1384 cm-1 to NO group. The XRD (X-Ray Diffraction) spectra show clearly the alteration process from amorphous to crystalline structure as the calcinations increased from 300 to 600oC. In addition, the TEM (Transmission Electron Microscope) analysis exhibits parts of the fabricated MnFeO3 found in cubic nano size of 15-40 nm under interested calcinations and the result is in agreement with that obtained by XRD investigation.


2021 ◽  
Vol 11 (5) ◽  
pp. 706-716
Author(s):  
Nada D. Al-Khthami ◽  
Tariq Altalhi ◽  
Mohammed Alsawat ◽  
Mohamed S. Amin ◽  
Yousef G. Alghamdi ◽  
...  

Different organic pollutants have been remediated photo catalytically by applying perovskite photocatalysts. Atrazine (ATR) is a pesticide commonly detected as a pollutant in drinking, surface and ground water. Herein, FeYO3@rGO heterojunction was synthesized and applied for photooxidation decomposition of ATR. First, FeYO 3nanoparticles (NPs) were prepared via routine sol-gel. After that, FeYO3 NPs were successfully incorporated with different percentages (5, 10, 15 and 20 wt.%) of reduced graphene oxide (rGO) in the synthesis of novel FeYO3@rGO photocatalyst. Morphological, structural, surface, optoelectrical and optical characteristics of constructed materials were identified via X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Transmission electron microscopy (TEM), adsorption/desorption isotherms, diffusive reflectance (DR) spectra, and photoluminescence response (PL). Furthermore, photocatalytic achievement of the constructed materials was evaluated via photooxidative degradation of ATR. Various investigations affirmed the usefulness of rGO incorporation on the advancement of formed photocatalysts. Actually, novel nanocomposite containing rGO (15 wt.%) possessed diminished bandgap energy, as well as magnified visible light absorption. Furthermore, such nanocomposite presented exceptional photocatalytic achievement when exposed to visible light as ATR was perfectly photooxidized over finite amount (1.6 g · L-1) from the optimized photocatalyst when illuminated for 30 min. The advanced photocatalytic performance of constructed heterojunctions could be accredited mainly to depressed recombination amid induced charges. The constructed FeYO3@rGO nanocomposite is labelled as efficient photocatalyst for remediation of herbicides from aquatic environments.


Nanopages ◽  
2019 ◽  
pp. 1-11
Author(s):  
G. M. Taha ◽  
M. N. Rashed ◽  
M. S. El-Sadek ◽  
M. A. Moghazy

Abstract BiFeO3 (BFO) nanopowder was synthesized in a pure form via a sol- gel method based on glycol gel reaction. Effect of drying and preheating temperature on preventing other phases was studied. Many parameters were studied as calcination temperature and time & stirring temperature as well. The prepared powder was characterized by X-Ray Diffraction of powder (XRD) and Transmission Electron Microscope (TEM). High pure BiFeO3 was obtained by preheated process at 400 °C for 0.5 h and calcination at 600 °C for 0.5 h without any impurities compared to dry at110 °C.


1991 ◽  
Vol 246 ◽  
Author(s):  
J.A. Horton ◽  
E.P. George ◽  
C.J. Sparks ◽  
M.Y. Kao ◽  
O.B. Cavin ◽  
...  

AbstractA survey by differential scanning calorimetry (DSC) and recovery during heating of indentations on a series of nickel-aluminum alloys showed that the Ni-36 at.% Al composition has the best potential for a recoverable shape memory effect at temperatures above 100°C. The phase transformations were studied by high temperature transmission electron microscopy (TEM) and by high temperature x-ray diffraction (HTXRD). Quenching from 1200°C resulted in a single phase, fully martensitic structure. The initial quenched-in martensites were found by both TEM and X-ray diffraction to consist of primarily a body centered tetragonal (bct) phase with some body centered orthorhombic (bco) phase present. On the first heating cycle, DSC showed an endothermic peak at 121°C and an exothermic peak at 289°C, and upon cooling a martensite exothermic peak at 115° C. Upon subsequent cycles the 289°C peak disappeared. High temperature X-ray diffraction, with a heating rate of 2°C/min, showed the expected transformation of bct phase to B2 between 100 and 200°C, however the bco phase remained intact. At 400 to 450°C the B2 phase transformed to Ni2Al and Ni5Al3. During TEM heating experiments a dislocation-free martensite transformed reversibly to B2 at temperatures less than 150°C. At higher temperatures (nearly 600°C) 1/3, 1/3, 1/3 reflections from an ω-like phase formed. Upon cooling, the 1/3, 1/3, 1/3 reflections disappeared and a more complicated martensite resulted. Boron additions suppressed intergranular fracture and, as expected, resulted in no ductility improvements. Boron additions and/or hot extrusion encouraged the formation of a superordered bct structure with 1/2, 1/2, 0 reflections.


2014 ◽  
Vol 543-547 ◽  
pp. 3741-3744
Author(s):  
Quan Jing Mei ◽  
Cong Ying Li ◽  
Jing Dong Guo ◽  
Gui Wang ◽  
Hai Tao Wu

The ecandrewsite-type ZnTiO3was successfully synthesized by the aqueous sol-gel method using TiO2dioxide and zinc nitrate as starting materials instead of expensive organic solvent and metal alkoxides. The as-prepared nanopowders were characterized by X-ray diffraction (XRD), differential thermal analysis (DTA) and transmission electron microscopy (TEM), respectively. The results showed that the calcination process of gel consisted of a series of oxidation and combustion reactions, accompanied by significantly exothermal effects. Highly reactive nanosized ZnTiO3powders were successfully obtained at 850 °C with particle size ~50 nm. By comparison, the aqueous sol-gel process was the most effective and least expensive technique used for the preparation of ZnTiO3nanopowders.


2018 ◽  
Vol 42 (19) ◽  
pp. 16307-16328 ◽  
Author(s):  
Mohammad Hassan Omidi ◽  
Mohammad Hossein Ahmadi Azqhandi ◽  
Bahram Ghalami-Choobar

In this study, branched polyethylenimine (PEI) loaded on magnetic multiwalled carbon nanotubes (MWCNT/CoFe2O4) was synthesized and characterized by transmission electron microscopy (TEM), field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD), Brunauer–Emmett–Teller (BET) analysis and Fourier transform infrared spectroscopy (FTIR).


Sign in / Sign up

Export Citation Format

Share Document