scholarly journals Bisphenol S rapidly depresses heart function through estrogen receptor-β and decreases phospholamban phosphorylation in a sex-dependent manner

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Melissa Ferguson ◽  
Ilka Lorenzen-Schmidt ◽  
W. Glen Pyle

Abstract The health effects of the endocrine disruptor Bisphenol A (BPA) led to its partial replacement with Bisphenol S (BPS) in several products including food containers, toys, and thermal paper receipts. The acute effects of BPS on myocardial contractility are unknown. We perfused mouse hearts from both sexes for 15 min with physiologically relevant doses of BPS or BPA. In females BPS (1 nM) decreased left ventricular systolic pressure by 5 min, whereas BPA (1 nM) effects were delayed to 10 min. BPS effects in male mice were attenuated. In both sexes ER-β antagonism abolished the effects of BPS. Cardiac myofilament function was not impacted by BPS or BPA in either sex, although there were sex-dependent differences in troponin I phosphorylation. BPS increased phospholamban phosphorylation at S16 only in female hearts, whereas BPA reduced phosphorylation in both sexes. BPA decreased phospholamban phosphorylation at T17 in both sexes while BPS caused dephosphorylation only in females. This is the first study to compare sex differences in the acute myocardial response to physiologically relevant levels of BPS and BPA, and demonstrates a rapid ability of both to depress heart function. This study raises concerns about the safety of BPS as a replacement for BPA.

2006 ◽  
Vol 84 (2) ◽  
pp. 257-264 ◽  
Author(s):  
Paramjit S. Tappia ◽  
Rabban Mangat ◽  
Cindy Gabriel ◽  
Melissa R. Dent ◽  
Nina Aroutiounova ◽  
...  

The present study was undertaken to assess the heart function, by the in vivo catheterization technique, of healthy male and female Sprague–Dawley rats fed different conjugated linoleic acid (CLA) isomers, (cis-9, trans-11 (c9,t11) and trans-10, cis-12 (t10,c12)) individually and in combination (50:50 mix as triglyceride or fatty acids) from 4 to 20 weeks of age. Whereas the triglyceride form of the CLA isomer mix lowered the heart rate, the rate of contraction (+dP/dt) and rate of relaxation (–dP/dt), systolic and diastolic pressures, mean arterial pressure, and the left ventricular systolic pressure were higher in male rats as compared with all the other dietary groups. In contrast, there were no significant effects in the cardiac function of the female rats in response to the CLA isomer mix in triglyceride form. Whereas the heart rate, +dP/dt, and left ventricular systolic pressure were lower in male rats fed the t10,c12 CLA isomer alone, the heart rate of the female rats was higher, but the systolic pressure, +dP/dt, and mean arterial pressure were lower compared with the control group. Also, the left ventricular end-diastolic pressure was specifically higher in the female rats in response to free fatty acids-containing CLA mix. Furthermore, an additive effect of the free fatty acids-containing CLA mix was seen in the +dP/dt and –dP/dt of female rats compared with the control group. These results indicate that CLA isomers exert differential effects on heart function and suggest the need for a complete evaluation of the benefits, interactions, and potential side effects of each isomer.


2020 ◽  
Vol 41 (Supplement_2) ◽  
Author(s):  
M Barki ◽  
M Losito ◽  
M.M Caracciolo ◽  
F Bandera ◽  
M Rovida ◽  
...  

Abstract Background The right ventricle (RV) is extremely sensitive to hemodynamic changes and increased impedance. In acute heart failure (AHF), the development of pulmonary venous congestion and the increase of left ventricular (LV) filling pressures favors pulmonary vascular adverse remodeling and ultimately RV dysfunction, leading to the onset of symptoms and to a further decay of cardiac dynamics. Purpose The aim of the study was to evaluate RV morphology and functional dynamics at admission and discharge in patients hospitalized for AHF, analyzing the role and the response to treatment of the RV and its coupling with pulmonary circulation (PC). Methods Eighty-one AHF patients (mean age 75.75±10.6 years, 59% males) were prospectively enrolled within 24–48 hours from admission to the emergency department (ED). In either the acute phase and at pre-discharge all patients underwent M-Mode, 2-Dimensional and Doppler transthoracic echocardiography (TTE), as well as lung ultrasonography (LUS), to detect an increase of extravascular lung water (EVLW) and development of pleural effusion. Laboratory tests were performed in the acute phase and at pre-discharge including the evaluation of NT-proBNP. Results At baseline we observed a high prevalence of RV dysfunction as documented by a reduced RV systolic longitudinal function [mean tricuspid annular plane systolic excursion (TAPSE) at admission of 16.47±3.86 mm with 50% of the patients exhibiting a TAPSE<16mm], a decreased DTI-derived tricuspid lateral annular systolic velocity (50% of the subjects showed a tricuspid s' wave<10 cm/s) and a reduced RV fractional area change (mean FAC at admission of 36.4±14.6%). Furthermore, an increased pulmonary arterial systolic pressure (PASP) and a severe impairment in terms of RV coupling to PC was detected at initial evaluation (mean PASP at admission: 38.8±10.8 mmHg; average TAPSE/PASP at admission: 0.45±0.17 mm/mmHg). At pre-discharge a significant increment of TAPSE (16.47±3.86 mm vs. 17.45±3.88; p=0.05) and a reduction of PASP (38.8±10.8 mmHg vs. 30.5±9.6mmHg, p<0.001) was observed. Furthermore, in the whole population we assisted to a significant improvement in terms of RV function and its coupling with PC as demonstrated by the significant increase of TAPSE/PASP ratio (TAPSE/PASP: 0.45±0.17 mm/mmHg vs 0.62±0.20 mm/mmHg; p<0.001). Patients significantly reduced from admission to discharge the number of B-lines and NT-proBNP (B-lines: 22.2±17.1 vs. 6.5±5 p<0.001; NT-proBNP: 8738±948 ng/l vs 4227±659 ng/l p<0.001) (Figure 1). Nonetheless, no significant changes of left atrial and left ventricular dimensions and function were noted. Conclusions In AHF, development of congestion and EVLW significantly impact on the right heart function. Decongestion therapy is effective for restoring acute reversal of RV dysfunction, but the question remains on how to impact on the biological properties of the RV. Funding Acknowledgement Type of funding source: None


2019 ◽  
Vol 11 (2) ◽  
Author(s):  
Herlina Dimiati ◽  
Abdus Samik Wahab ◽  
Mohammad Juffrie ◽  
Madarina Julia ◽  
Basri A. Gani

The Protein Energy Malnutrition (PEM) is the condition of a lack of carbohydrate and protein stores in the body that trigger chronic failure nutrient intake and body maintenance function caused to impact the heart functions. The NT-pro-BNP and Hs- Troponin I proteins were found as the indicator of cardiac dysfunction. The sixty subjects of PEM, analyzed by standard of Indonesia Healt Ministry as well as nutritional status. The blood electrolytes examined by laboratory assay and the levels of Hs-Troponin 1 and NT-Pro-BNP were analyzed by Immune-Chromatography method. Assessing of the ventricular mass with the seeing the peak of the diastolic flow rate of left ventricular that estimated by the curve of the receiver operating characteristic and the area under the curve (P<0.05). The result has shown that the PEM decreased in the left ventricular mass for impaired heart function and systolic disorder. The Hs- Troponin I (90.9%) has better sensitivity than NT-pro-BNP (85.5%) if the merger of those markers possesses the lowest sensitivity (81.8%). These proteins have good biomarkers in heart function, mainly in cases where PEM is present.


Circulation ◽  
2015 ◽  
Vol 132 (suppl_3) ◽  
Author(s):  
Roderick C Deaño ◽  
Jackie Szymonifka ◽  
Qing Zhou ◽  
Jigar H Contractor ◽  
Zachary Lavender ◽  
...  

Objective: Patients with heart failure (HF) and pulmonary hypertension (PH) have worse outcomes after cardiac resynchronization therapy (CRT). The relationship of circulating HF biomarkers and right ventricular systolic pressure (RVSP) may provide insight to the mechanism between PH and poor CRT response. Methods: In 90 patients (age 65 ± 13, 78% male, EF 26 ± 8%, RVSP 44 ± 12 mmHg) undergoing CRT, we measured baseline RVSP by echocardiography and obtained peripheral blood samples drawn at the time of device implantation. We measured levels of established and emerging HF biomarkers (Table 1). CRT non-response was defined as no improvement of adjudicated HF Clinical Composite Score at 6 months. Major adverse cardiac event (MACE) was defined as composite endpoint of death, cardiac transplant, left ventricular assist device, and HF hospitalization within 2 years. Results: There were 34% CRT non-responders and 27% had MACE. Per 1 unit increase in log-transformed RVSP, there was an 11-fold increase risk of having CRT non-response (odd ratio [OR] 11.0, p=0.01) and over 5-fold increase of developing 2-year MACE (hazard ratio [HR] 5.8, p=0.02). When comparing patients with severe PH (RVSP>60 mmHg) to those without PH (RVSP < 35 mmHg), there was an 8-fold increase in CRT nonresponse (OR 8.4, p=0.03) but no difference in MACE (p=NS). RVSP was correlated with increased biomarker levels of myocardial stretch and fibrosis, but not myocardial necrosis (Table 1). Conclusions: Higher RVSP is associated with greater rates of CRT non-response and adverse clinical outcomes. The mechanistic association between severe PH and CRT nonresponse may be explained by the biomarker profile reflective of myocardial wall stretch and fibrosis.


2009 ◽  
Vol 37 (06) ◽  
pp. 1059-1068 ◽  
Author(s):  
Min Ge ◽  
Shanfeng Ma ◽  
Liang Tao ◽  
Sudong Guan

The relationship between changes of cardiac function and the gene expressions of two major myocardial skeleton proteins, titin and nebulin, and the effect of gypenosides on these gene expressions in diabetic cardiomyopathy rat were explored in the present study. Forty Sprague-Dawley rats were randomly divided into three groups: control group, diabetic cardiomyopathy group and gypenosides-treated diabetic cardiomyopathy group. The diabetic cardiomyopathy was induced in rats by injecting streptozotocin (STZ, 55 mg/kg) intraperitoneally. Seven weeks after the rats suffered from diabetes, the rats were treated with gypenosides 100 mg/kg per day orally for six weeks in gypenosides-treated group. In the meanwhile, the pure water was given to diabetic cardiomyopathy and the control groups. Subsequently, the cardiac functions, including left ventricular systolic pressure (LVSP), left ventricular end diastolic pressure (LVEDP), ± dP/dtmax and t–dP/dmaxt, as well as the mRNA content and proteins of titin and nebulin in myocardium were determined. The results indicated that (1) the diabetic cardiomyopathy rats had decreased LVSP and ± dP/dtmax, increased LVEDP, and prolonged t–dP/dtmax than normal rats; (2) LVSP and ± dP/dtmax in diabetic cardiomyopathy rats treated with gypenosides were significantly higher and LVEDP and t–dP/dtmax were significantly lower than those without giving gypenosides; (3) the mRNA contents and proteins of titin and nebulin in diabetic cardiomyopathy rats were remarkably lower than those in the control rats and gypenosides had no effect on mRNA and protein expression levels of titin and nebulin in diabetic cardiomyopathy rats. We conclude that (1) the cardiac function as well as the mRNA expressions of titin and nebulin decreased in diabetic cardiomyopathy rats; (2) gypenosides secure cardiac muscles and their function from diabetic impairment and these beneficial effects of gypenosides are not by changing the expressions of titin and nebulin.


2003 ◽  
Vol 81 (2) ◽  
pp. 125-128 ◽  
Author(s):  
Ghada S Hassan ◽  
Fazila Chouiali ◽  
Takayuki Saito ◽  
Fu Hu ◽  
Stephen A Douglas ◽  
...  

Recent studies have shown that the vasoactive peptide urotensin-II (U-II) exerts a wide range of action on the cardiovascular system of various species. In the present study, we determined the in vivo effects of U-II on basal hemodynamics and cardiac function in the anesthetized intact rat. Intravenous bolus injection of human U-II resulted in a dose-dependent decrease in mean arterial pressure and left ventricular systolic pressure. Cardiac contractility represented by ±dP/dt was decreased after injection of U-II. However, there was no significant change in heart rate or diastolic pressure. The present study suggests that upregulation of myocardial U-II may contribute to impaired myocardial function in disease conditions such as congestive heart failure.Key words: urotensin-II, rat, infusion, heart.


1995 ◽  
Vol 109 (4) ◽  
pp. 780-786 ◽  
Author(s):  
Osamu Kawaguchi ◽  
John S. Sapirstein ◽  
William B. Daily ◽  
Walter E. Pae ◽  
William S. Pierce

Hypertension ◽  
2015 ◽  
Vol 66 (suppl_1) ◽  
Author(s):  
Jonathas F Almeida ◽  
Robson A Santos

Alamandine, a biologically active peptide of the renin-angiotensin system (RAS), was recently described and characterized. Further it has been shown to present effects similar to those elicited by Ang-(1-7). It has been described that Ang-(1-7) decreases the incidence and duration of ischemia-reperfusion arrhythmias and improved the post-ischemic function in isolated perfused rat hearts. In this study we aimed to evaluate the effects of Alamandine in isolated rat hearts subjected to myocardial infarction (MI). Wistar rats weighing between 250-300g were euthanized and their hearts were placed on Langendorff apparatus to evaluate the cardiac parameters. Hearts were submitted to 30min of stabilization, 30min of partial ischemia by occlusion of the left descending coronary artery and 30min of reperfusion. Drugs (alamandine 22pM, d-pro7-ang-(1-7) 220pM) were added to the perfusion setting from the beginning of the experiment until the end. 2,3,5-trypheniltetrazolium chloride were used to evaluate the extension of infarcted area. In control hearts (CON), there was a decrease on the left ventricular systolic pressure (LVSP) on ischemic period (54,6 ± 6,9mmHg) compared to the baseline period (84,6 ± 11,6mmHg). Alamandine (ALA) attenuated that decrease in the ischemic period (66,9 ± 7,9mmHg) vs (82,3 ± 8,9mmHg). Further, ischemia led to a decrease in the left ventricular developed pressure (dLVP), dP/dt maximum and minimum when compared to baseline values. ALA, once more, kept the ischemic parameters of dLVP and dP/dt max and min (58,9 ± 8mmHg; 1629 ± 202,2mmHg/s; 1101 ± 130mmHg/s, respectively) similar to those of baseline period (68,9 ± 8,92; 1682 ± 248,8; 1179 ± 118,6 mmHg, respectively). Ischemia/reperfusion induced an arrhythmia severity index (ASI) in control hearts (4,9 ± 1,26) higher than in hearts treated with ALA (1,10 ± 0,58). ALA also reduced infarcted area (19,64 ± 2,61%) compared with CON (33,85 ± 4,55%). All those effects were blocked by D-PRO7-Ang-(1-7). In conclusion, our data shown that Alamandine exert cardioprotective effects in post-ischemic function in isolated rat hearts by preventing LVSP, dLVP , dP/dt max and min decrease. Furthermore it reduced the infarcted area and I/R arrhythmias, apparently involving MrgD receptor participation.


2004 ◽  
Vol 13 (5) ◽  
pp. 394-403 ◽  
Author(s):  
Penelope S. Villars ◽  
Shannan K. Hamlin ◽  
Andrew D. Shaw ◽  
Joseph T. Kanusky

Left ventricular diastolic function plays an important role in cardiac physiology. Lusitropy, the ability of the cardiac myocytes to relax, is affected by both biochemical events within the myocyte and biomechanical events in the left ventricle. β-Adrenergic stimulation alters diastole by enhancing the phosphorylation of phospholamban, a substrate within the myocyte that increases the uptake of calcium ions into the sarcoplasmic reticulum, increasing the rate of relaxation. Troponin I, a regulatory protein involved in the coupling of excitation to contraction, is vital to maintaining the diastolic state; depletion of troponin I can produce diastolic dysfunction. Other biochemical events, such as defects in the voltage-sensitive release mechanism or in inositol triphosphate calcium release channels, have also been implicated in altering diastolic tone. Extracellular collagen determines myocardial stiffness; impaired glucose tolerance can induce an increase in collagen cross-linking and lead to higher end-diastolic pressures. The passive properties of the left ventricle are most accurately measured during the diastasis and atrial contraction phases of diastole. These phases of the cardiac cycle are the least affected by volume status, afterload, inherent viscoelasticity, and the inotropic state of the myocardium. Diastolic abnormalities can be conceptualized by using pressure-volume loops that illustrate myocardial work and both diastolic and systolic pressure-volume relationships. The pressure-volume model is an educational tool that can be used to demonstrate isolated changes in preload, afterload, inotropy, and lusitropy and their interaction.


1965 ◽  
Vol 209 (6) ◽  
pp. 1081-1088 ◽  
Author(s):  
G. Ascanio ◽  
F. Barrera ◽  
E. V. Lautsch ◽  
M. J. Oppenheimer

Intracoronary administration of hexachlorotetrafluorobutane (Hexa) into non-thoracotomized dogs produced a statistically significant decrease in left ventricular systolic pressure (LVSP), mean femoral arterial blood pressure (MFAP), first derivative of left ventricular pressure pulse (dP/d t), total peripheral resistance (TPR), and cardiac output (C.O.) lasting up to 1 hr after injection. Femoral vascular resistance decreased during the first 3 min after production of necrobiosis. Fifty percent of the dogs died of ventricular fibrillation (VF) after Hexa infarction. Prereserpinized dogs did not show significant changes in the parameters which were significantly changed in normal dogs after Hexa necrobiosis except in the case of VF which was almost absent in this group. Bilateral vagotomy prior to Hexa administration prevented most hemodynamic changes after necrobiosis whereas atropine did not. Bilateral vagotomy and atropine 1 hr after necrobiosis increased MFAP, dP/d t, LVSP, C.O., and TPR. Apparently excitatory efferent sympathetic activity on heart and femoral arterial vessels is reflexly inhibited by the effects of intracoronary injection of Hexa. The afferent pathway is via the vagus nerve.


Sign in / Sign up

Export Citation Format

Share Document