scholarly journals Confinement Effect on Porosity and Permeability of Shales

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Jan Goral ◽  
Palash Panja ◽  
Milind Deo ◽  
Matthew Andrew ◽  
Sven Linden ◽  
...  

AbstractPorosity and permeability are the key factors in assessing the hydrocarbon productivity of unconventional (shale) reservoirs, which are complex in nature due to their heterogeneous mineralogy and poorly connected nano- and micro-pore systems. Experimental efforts to measure these petrophysical properties posse many limitations, because they often take weeks to complete and are difficult to reproduce. Alternatively, numerical simulations can be conducted in digital rock 3D models reconstructed from image datasets acquired via e.g., nanoscale-resolution focused ion beam–scanning electron microscopy (FIB-SEM) nano-tomography. In this study, impact of reservoir confinement (stress) on porosity and permeability of shales was investigated using two digital rock 3D models, which represented nanoporous organic/mineral microstructure of the Marcellus Shale. Five stress scenarios were simulated for different depths (2,000–6,000 feet) within the production interval of a typical oil/gas reservoir within the Marcellus Shale play. Porosity and permeability of the pre- and post-compression digital rock 3D models were calculated and compared. A minimal effect of stress on porosity and permeability was observed in both 3D models. These results have direct implications in determining the oil-/gas-in-place and assessing the production potential of a shale reservoir under various stress conditions.

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Jan Goral ◽  
Milind Deo

AbstractAdvances in imaging have made it possible to view nanometer and sub-nanometer structures that are either synthesized or that occur naturally. It is believed that fluid dynamic and thermodynamic behavior differ significantly at these scales from the bulk. From a materials perspective, it is important to be able to create complex structures at the nanometer scale, reproducibly, so that the fluid behavior may be studied. New advances in nanoscale-resolution 3D-printing offer opportunities to achieve this goal. In particular, additive manufacturing with two-photon polymerization allows creation of intricate structures. Using this technology, a creation of the first nano-3D-printed digital (shale) rock is reported. In this paper, focused ion beam-scanning electron microscopy (FIB-SEM) nano-tomography image dataset was used to reconstruct a high-resolution digital rock 3D model of a Marcellus Shale rock sample. Porosity of this 3D model has been characterized and its connected/effective pore system has been extracted and nano-3D-printed. The workflow of creating this novel nano-3D-printed digital rock 3D model is described in this paper.


2021 ◽  
Vol 40 (9) ◽  
pp. 662-666
Author(s):  
Mita Sengupta ◽  
Shannon L. Eichmann

Digital rocks are 3D image-based representations of pore-scale geometries that reside in virtual laboratories. High-resolution 3D images that capture microstructural details of the real rock are used to build a digital rock. The digital rock, which is a data-driven model, is used to simulate physical processes such as fluid flow, heat flow, electricity, and elastic deformation through basic laws of physics and numerical simulations. Unconventional reservoirs are chemically heterogeneous where the rock matrix is composed of inorganic minerals, and hydrocarbons are held in the pores of thermally matured organic matter, all of which vary spatially at the nanoscale. This nanoscale heterogeneity poses challenges in measuring the petrophysical properties of source rocks and interpreting the data with reference to the changing rock structure. Focused ion beam scanning electron microscopy is a powerful 3D imaging technique used to study source rock structure where significant micro- and nanoscale heterogeneity exists. Compared to conventional rocks, the imaging resolution required to image source rocks is much higher due to the nanoscale pores, while the field of view becomes smaller. Moreover, pore connectivity and resulting permeability are extremely low, making flow property computations much more challenging than in conventional rocks. Elastic properties of source rocks are significantly more anisotropic than those of conventional reservoirs. However, one advantage of unconventional rocks is that the soft organic matter can be captured at the same imaging resolution as the stiff inorganic matrix, making digital elasticity computations feasible. Physical measurement of kerogen elastic properties is difficult because of the tiny sample size. Digital rock physics provides a unique and powerful tool in the elastic characterization of kerogen.


2021 ◽  
Author(s):  
Alexander Avdonin ◽  
Mohammad Ebadi ◽  
Vladislav Krutko

Abstract Digital rock analysis has proven to be useful for the prediction of petrophysical properties of conventional reservoirs, where the pore space is captured well by a modern µCT scanner with a resolution of 1-5 µm. Nevertheless, this resolution is not enough to accurately capture the pore space of tight (low-permeable) rock samples. As a result, derived digital rock models do not reflect the real rock topology, and permeability predictions yield unreliable results. Our approach deploys high-contrast µCT scanning technique and Focused Ion Beam milling combined with Scanning Electron Microscopy to improve the quality of digital rock models and, hence, the permeability prediction. This workflow is successfully applied to a low-permeable rock sample of Achimov deposits. The computed permeability compares well to the experimental value.


Materials ◽  
2020 ◽  
Vol 13 (18) ◽  
pp. 3928
Author(s):  
Svyatoslav Chugunov ◽  
Nikolaus A. Adams ◽  
Iskander Akhatov

Evolution of additively manufactured (AM) ceramics’ microstructure between manufacturing stages is a hardly explored topic. These data are of high demand for advanced numerical modeling. In this work, 3D microstructural models of Al2O3 greenbody, brownbody and sintered material are presented and analyzed, for ceramic samples manufactured with SLA-based AM workflow, using a commercially available ceramic paste and 3D printer. The novel data, acquired at the micro- and mesoscale, using Computed Tomography (CT), Scanning Electron Microscopy (SEM) and Focused Ion-Beam SEM (FIB/SEM) techniques, allowed a deep insight into additive ceramics characteristics. We demonstrated the spatial 3D distribution of ceramic particles, an organic binder and pores at every stage of AM workflow. The porosity of greenbody samples (1.6%), brownbody samples (37.3%) and sintered material (4.9%) are analyzed. Pore distribution and possible originating mechanisms are discussed. The location and shape of pores and ceramic particles are indicative of specific physical processes driving the ceramics manufacturing. We will use the presented microstructural 3D models as input and verification data for advanced numerical simulations developed in the project.


2016 ◽  
Author(s):  
Georg H. Grathoff ◽  
Markus Peltz ◽  
Frieder Enzmann ◽  
Stephan Kaufhold

Abstract. The goal of this study is to better understand the porosity and permeability in shales to improve modelling fluid and gas flow related to shale diagenesis. Two samples (WIC and HAD) were investigated, both Mid Jurassic Posidonia organic rich shales from central Germany of different maturity (WIC R0 0.53 % and HAD R0 1.45 %). The method for image collection was Focused Ion Beam (FIB) microscopy coupled with Scanning Electron Microscopy (SEM). For image and data analysis Avizo and GeoDict was used. Porosity was calculated from segmented 3D FIB based images and permeability was simulated by a Navier Stokes-Brinkman solver in the segmented images. Results show that the quantity and distribution of pore clusters and pores (> 40 nm) are similar. The largest pores are located within carbonates and clay minerals, whereas the smallest pores are within the matured organic matter. Orientation of the pores calculated as pore paths showed minor directional differences between the samples, possibly due to maturation. Both samples have no axis connectivity of pore clusters in the x, y, and z direction on the scale of 10 to 20 of micrometer, but do show connectivity on the micrometer scale. The volume of organic matter in the studied volume is representative of the TOC in the samples. Organic matter does show axis connectivity in the x, y, and z direction. With increasing maturity the porosity in organic matter increases from close to 0 to more than 5 %. These pores are small and in the large organic particles have little connection to the mineral matrix. Continuous pore size distributions are compared with Mercury Intrusion Porosimetry (MIP) data. Minor differences are caused by resolution limits of the FIB-SEM and by the development of small pores during the maturation of the organic matter. Calculations show no permeability when only considering visible pores due to the lack of axis connectivity. Adding the organics with a background permeability of 1e-22 m2 to the calculations, the total permeability increased by one to two orders of magnitude depending on the direction of flow boundary conditions. Our results compare well with experimental data from the literature suggesting that upscaling may be possible in the future.


2020 ◽  
Vol 21 (15) ◽  
pp. 5558
Author(s):  
Astrid Rollenhagen ◽  
Bernd Walkenfort ◽  
Rachida Yakoubi ◽  
Sarah A. Klauke ◽  
Sandra F. Schmuhl-Giesen ◽  
...  

Modern electron microscopy (EM) such as fine-scale transmission EM, focused ion beam scanning EM, and EM tomography have enormously improved our knowledge about the synaptic organization of the normal, developmental, and pathologically altered brain. In contrast to various animal species, comparably little is known about these structures in the human brain. Non-epileptic neocortical access tissue from epilepsy surgery was used to generate quantitative 3D models of synapses. Beside the overall geometry, the number, size, and shape of active zones and of the three functionally defined pools of synaptic vesicles representing morphological correlates for synaptic transmission and plasticity were quantified. EM tomography further allowed new insights in the morphological organization and size of the functionally defined readily releasable pool. Beside similarities, human synaptic boutons, although comparably small (approximately 5 µm), differed substantially in several structural parameters, such as the shape and size of active zones, which were on average 2 to 3-fold larger than in experimental animals. The total pool of synaptic vesicles exceeded that in experimental animals by approximately 2 to 3-fold, in particular the readily releasable and recycling pool by approximately 2 to 5-fold, although these pools seemed to be layer-specifically organized. Taken together, synaptic boutons in the human temporal lobe neocortex represent unique entities perfectly adapted to the “job” they have to fulfill in the circuitry in which they are embedded. Furthermore, the quantitative 3D models of synaptic boutons are useful to explain and even predict the functional properties of synaptic connections in the human neocortex.


Solid Earth ◽  
2016 ◽  
Vol 7 (4) ◽  
pp. 1145-1156 ◽  
Author(s):  
Georg H. Grathoff ◽  
Markus Peltz ◽  
Frieder Enzmann ◽  
Stephan Kaufhold

Abstract. The goal of this study is to better understand the porosity and permeability in shales to improve modelling fluid and gas flow related to shale diagenesis. Two samples (WIC and HAD) were investigated, both mid-Jurassic organic-rich Posidonia shales from Hils area, central Germany of different maturity (WIC R0 0.53 % and HAD R0 1.45 %). The method for image collection was focused ion beam (FIB) microscopy coupled with scanning electron microscopy (SEM). For image and data analysis Avizo and GeoDict was used. Porosity was calculated from segmented 3-D FIB based images and permeability was simulated by a Navier Stokes–Brinkman solver in the segmented images. Results show that the quantity and distribution of pore clusters and pores (≥  40 nm) are similar. The largest pores are located within carbonates and clay minerals, whereas the smallest pores are within the matured organic matter. Orientation of the pores calculated as pore paths showed minor directional differences between the samples. Both samples have no continuous connectivity of pore clusters along the axes in the x, y, and z direction on the scale of 10 to 20 of micrometer, but do show connectivity on the micrometer scale. The volume of organic matter in the studied volume is representative of the total organic carbon (TOC) in the samples. Organic matter does show axis connectivity in the x, y, and z directions. With increasing maturity the porosity in organic matter increases from close to 0 to more than 5 %. These pores are small and in the large organic particles have little connection to the mineral matrix. Continuous pore size distributions are compared with mercury intrusion porosimetry (MIP) data. Differences between both methods are caused by resolution limits of the FIB-SEM and by the development of small pores during the maturation of the organic matter. Calculations show no permeability when only considering visible pores due to the lack of axis connectivity. Adding the organic matter with a background permeability of 1 × 10−21 m2 to the calculations, the total permeability increased by up to 1 order of magnitude for the low mature and decreases slightly for the overmature sample from the gas window. Anisotropy of permeability was observed. Permeability coefficients increase by 1 order of magnitude if simulations are performed parallel to the bedding. Our results compare well with experimental data from the literature suggesting that upscaling may be possible in the future as soon as maturity dependent organic matter permeability coefficients can be determined.


2002 ◽  
Vol 733 ◽  
Author(s):  
Brock McCabe ◽  
Steven Nutt ◽  
Brent Viers ◽  
Tim Haddad

AbstractPolyhedral Oligomeric Silsequioxane molecules have been incorporated into a commercial polyurethane formulation to produce nanocomposite polyurethane foam. This tiny POSS silica molecule has been used successfully to enhance the performance of polymer systems using co-polymerization and blend strategies. In our investigation, we chose a high-temperature MDI Polyurethane resin foam currently used in military development projects. For the nanofiller, or “blend”, Cp7T7(OH)3 POSS was chosen. Structural characterization was accomplished by TEM and SEM to determine POSS dispersion and cell morphology, respectively. Thermal behavior was investigated by TGA. Two methods of TEM sample preparation were employed, Focused Ion Beam and Ultramicrotomy (room temperature).


Sign in / Sign up

Export Citation Format

Share Document