scholarly journals Design of novel super wide band antenna close to the fundamental dimension limit theory

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Shuvashis Dey ◽  
Nemai Chandra Karmakar

Abstract This paper investigates the design and practical implementation of a Super Wide Band (SWB) antenna along with the application of fundamental bandwidth limitation theory of small antennas in the proposed design. The antenna is designed on a material with permittivity, εr = 3 where the patch metallization height is maintained as 0.035 mm. The designed antenna is then modified by enhancing the copper patch with an additional layer of 28.5 mm thickness. The proposed antenna achieves a huge frequency range with a ratio bandwidth starting from 96.96:1 to as high as 115.10: 1. The designed antenna operating band with thinner height starts from 1.65 to 160 GHz while with the added patch metallic height, the antenna operates from a minimum of 1.39 to 160 GHz with an average nominal bandwidth of more than 158 GHz. By enhancing the patch height, the antenna spherical volume is utilized more efficiently. Using this principle, the antenna impedance bandwidth is augmented while a reduction in electrical size is achieved. A comparison with the fundamental theories by Chu and Mclean illustrates that the designed SWB antenna electrical size exceeds Mclean and nearly touches the Chu fundamental limit curve. This eventually offers the maximized bandwidth with the most compact size for an SWB antenna. The designed antenna with thinner patch metallization height is practically fabricated and measured up to 67 GHz using Vector Network Analyzer to provide experimental validation.

2015 ◽  
Vol 9 (1) ◽  
pp. 133-141 ◽  
Author(s):  
Sandeep Kumar Palaniswamy ◽  
Malathi Kanagasabai ◽  
Shrivastav Arun Kumar ◽  
M. Gulam Nabi Alsath ◽  
Sangeetha Velan ◽  
...  

This paper presents the design, testing, and analysis of a clover structured monopole antenna for super wideband applications. The proposed antenna has a wide impedance bandwidth (−10 dB bandwidth) from 1.9 GHz to frequency over 30 GHz. The clover shaped antenna with a compact size of 50 mm × 45 mm is designed and fabricated on an FR4 substrate with a thickness of 1.6 mm. Parametric study has been performed by varying the parameters of the clover to obtain an optimum wide band characteristics. Furthermore, the prototype introduces a method of achieving super wide bandwidth by deploying fusion of elliptical patch geometries (clover shaped) with a semi elliptical ground plane, loaded with a V-cut at the ground. The proposed antenna has a 14 dB bandwidth from 5.9 to 13.1 GHz, which is suitable for ultra wideband (UWB) outdoor propagation. The prototype is experimentally validated for frequencies within and greater than UWB. Transfer function, impulse response, and group delay has been plotted in order to address the time domain characteristics of the proposed antenna with fidelity factor values. The possible applications cover wireless local area network, C-band, Ku-band, K-band operations, Worldwide Interoperability for Microwave Access, and Wireless USB.


2016 ◽  
Vol 26 (04) ◽  
pp. 1750068 ◽  
Author(s):  
Jaspal Singh Khinda ◽  
Malay Ranjan Tripathy ◽  
Deepak Gambhir

A low-cost multi-edged rectangular microstrip fractal antenna (RMFA) yielding a huge bandwidth of 8.62[Formula: see text]GHz has been proposed in this paper. The proposed fractal antenna design constitutes a radiation patch, fed with 50[Formula: see text][Formula: see text] microstrip line and a partial ground plane. The partial ground plane is the combination of shapes of rectangle and three-point arc. The proposed antenna is simulated as well as fabricated. The simulated results using electromagnetic solver software and measured with vector network analyzer bench MS46322A are presented and compared. The various parameters such as return loss, voltage standing wave ratio (VSWR), antenna impedance, gain, directivity, group delay and phase of [Formula: see text], radiation efficiency and patterns are presented here. The depth of return loss is improved for a wide range of frequencies. The proposed fractal antenna is further extended to linear array to improve the gain and impedance bandwidth. The simulated and measured results prove the superiority of the proposed antenna.


2020 ◽  
pp. 1-13
Author(s):  
Qiying Wang ◽  
Peter C. B. Phillips

Abstract We study optimal bandwidth selection in nonparametric cointegrating regression where the regressor is a stochastic trend process driven by short or long memory innovations. Unlike stationary regression, the optimal bandwidth is found to be a random sequence which depends on the sojourn time of the process. All random sequences $h_{n}$ that lie within a wide band of rates as the sample size $n\rightarrow \infty $ have the property that local level and local linear kernel estimates are asymptotically normal, which enables inference and conveniently corresponds to limit theory in the stationary regression case. This finding reinforces the distinctive flexibility of data-based nonparametric regression procedures for nonstationary nonparametric regression. The present results are obtained under exogenous regressor conditions, which are restrictive but which enable flexible data-based methods of practical implementation in nonparametric predictive regressions within that environment.


2015 ◽  
Vol 9 (2) ◽  
pp. 403-409 ◽  
Author(s):  
Richa Chandel ◽  
Anil Kumar Gautam ◽  
Binod Kumar Kanaujia

In this paper, a novel design and experimental study of microstrip-line-fed rhombus-shaped slot antenna is presented. The proposed antenna shows an ultra-wide band (UWB) operation with good impedance matching by choosing appropriate rhombus-shaped slot and feeding structure. The proposed antenna has a simple structure and compact size as compared with many reported antennas. The measured results validate the design and the impedance bandwidth can operate from 2.78 to 12.92 GHz (10.14 GHz), which evidently covers entire UWB (3.1–10.6 GHz). Furthermore, the key parameters of the antenna are also discussed to study their persuade on the antenna performance.


2015 ◽  
Vol 8 (7) ◽  
pp. 1077-1084
Author(s):  
Sandeep K. Palaniswamy ◽  
Kanagasabai Malathi ◽  
Arun K. Shrivastav

This paper presents design, fabrication, and testing of a palm tree structured monopole antenna for wideband applications. The proposed antenna has a wide impedance bandwidth (−10 dB bandwidth) from 4 to 10.4 GHz. Palm tree antenna of compact size 23 mm × 20 mm is designed and fabricated on an FR4 substrate of thickness 1.6 mm. To validate the design, a mathematical relationship between the parameters of the palm tree geometry and the lower cut-off frequency has been established. Parametric study has been carried out to obtain optimum wideband characteristics. The prototype is experimentally validated for the band 4–10.4 GHz within ultra-wideband operations. Transfer function, impulse response and Group delay has been plotted in order to address the time domain characteristics of the palm tree antenna with fidelity factor values. The possible applications cover 5.2–5.8 GHz WLAN, C-band operations, 5.5 GHz WiMAX, and Wireless USB.


Electronics ◽  
2020 ◽  
Vol 9 (7) ◽  
pp. 1084 ◽  
Author(s):  
Yasir I. A. Al-Yasir ◽  
Mohammed K. Alkhafaji ◽  
Hana’a A. Alhamadani ◽  
Naser Ojaroudi Parchin ◽  
Issa Elfergani ◽  
...  

A new and compact four-pole wide-band planar filter-antenna design is proposed in this article. The effect of the dielectric material type on the characteristics of the design is also investigated and presented. The filter-antenna structure is formed by a fourth-order planar band-pass filter (BPF) cascaded with a monopole microstrip antenna. The designed filter-antenna operates at a centre frequency of 2.4 GHz and has a relatively wide-band impedance bandwidth of about 1.22 GHz and a fractional bandwidth (FBW) of about 50%. The effects of three different types of substrate material, which are Rogers RT5880, Rogers RO3003, and FR-4, are investigated and presented using the same configuration. The filter-antenna design is simulated and optimised using computer simulation technology (CST) software and is fabricated and measured using a Rogers RT5880 substrate with a height (h) of 0.81 mm, a dielectric constant of 2.2, and a loss tangent of 0.0009. The structure is printed on a compact size of 0.32 λ0 × 0.30 λ0, where λ0 is the free-space wavelength at the centre frequency. A good agreement is obtained between the simulation and measurement performance. The designed filter-antenna with the achieved performance can find different applications for 2.4 GHz ISM band and 4G wireless communications.


2021 ◽  
Author(s):  
syed zeeshan Ali ◽  
Ikrame E Khuda ◽  
Kamran Raza ◽  
Mansoor Ebrahim

Abstract In this paper, using in-depth simulations and measurements, a simple and compact design is engineered for making a circular ring microstrip patch antenna radiating element which is suitable for different ultra wide band(UWB) applications. This design approach is different because it has not utilized the usual method of using a set of electromagnetic equations and calculations to make the radiating antenna. Measurements and simulations were performed on Microwave CST. Using this measurement engineering approach, novelty of proposed antenna structure is obtained by making the required changes in the ground plane. The measurements showed that truncating the ground plane by a square shape structure of 2.5mm by 2.5mm size at the feed point was practically significant to provide an impedance bandwidth (\({S}_{11}cript>\)) ranging from 2.75 GHz to 32.035 GHz with a VSWR which is less than 2. For this entire bandwidth the directivity has shown a variation from 0.8 dBi to 7.9 dBi. The compact size (33mm x28mm x1.57mm), low design complexity, very high bandwidth, good directivity and satisfying VSWR has made this antenna unique among all previously presented UWB antennas.


Author(s):  
Ruchi ◽  
Amalendu Patnaik ◽  
M. V. Kartikeyan

Abstract Designing miniaturized multiband antennas to cover both the 5G new radio frequencies (FR1 and FR2) simultaneously is a challenge for wireless communication researchers. This paper presents two antenna designs : a dual-band printed antenna of size 18 × 16 × 0.285 mm3 operating at FR1–5.8 GHz and FR2–28 GHz and a triple-band printed antenna with dimensions 30 × 25 × 0.543 mm3 operating at FR1–3.5 GHz and 5.8 GHz (sub-6 GHz microwave frequency bands) and FR2–28 GHz (mm-wave frequency band). The final projected triple-band antenna has a compact size with an impedance bandwidth of 12.71%, 11.32%, and 18.3% at 3.5 GHz, 5.8 GHz, and 28 GHz, respectively with the corresponding gain of 1.86 dB, 2.55 dB, and 4.41 dB. The measured radiation characteristics of the fabricated prototypes show that the proposed designs are suitable for trendy 5G-RFID and mobile Internet of things (IoT) applications.


Electronics ◽  
2019 ◽  
Vol 8 (2) ◽  
pp. 202 ◽  
Author(s):  
Xiaobo Zhang ◽  
Saeed Ur Rahman ◽  
Qunsheng Cao ◽  
Ignacio Gil ◽  
Muhammad Irshad khan

In this paper, a wideband antenna was designed for super-wideband (SWB) applications. The proposed antenna was fed with a rectangular tapered microstrip feed line, which operated over a SWB frequency range (1.42 GHz to 50 GHz). The antenna was implemented at a compact size with electrical dimensions of 0.16 λ × 0.27 λ × 0.0047 λ mm3, where λ was with respect to the lowest resonance frequency. The proposed antenna prototype was fabricated on a F4B substrate, which had a permittivity of 2.65 and 1 mm thickness. The SWB antenna exhibited an impedance bandwidth of 189% and a bandwidth ratio of 35.2:1. Additionally, the proposed antenna design exhibited three band notch characteristics that were necessary to eradicate interference from WLAN, WiMAX, and X bands in the SWB range. One notch was achieved by etching an elliptical split ring resonator (ESRR) in the radiator and the other two notches were achieved by placing rectangular split ring resonators close to the signal line. The first notch was tuned by incorporating a varactor diode into the ESRR. The prototype was experimentally validated with, with notch and without notch characteristics for SWB applications. The experimental results showed good agreement with simulated results.


2018 ◽  
Vol 7 (2.8) ◽  
pp. 529 ◽  
Author(s):  
Ch Ramakrishna ◽  
G A.E.Satish Kumar ◽  
P Chandra Sekhar Reddy

This paper presents a band notched WLAN self complementaryultra wide band antenna for wireless applications. The proposed antenna encounters a return loss (RL) less than -10dB for entire ultra wideband frequency range except band notched frequency. This paper proposes a hexagon shape patch, edge feeding, self complementary technique and defective ground structure. The antenna has an overall dimensionof 28.3mm × 40mm × 2mm, builton  substrate FR4 with a relative dielectric permittivity 4.4. And framework is simulated finite element method with help of high frequency structured simulator HFSSv17.2.the proposed antenna achieves a impedance bandwidth of 8.6GHz,  band rejected WLAN frequency range 5.6-6.5 GHz with  vswr is less than 2.


Sign in / Sign up

Export Citation Format

Share Document