scholarly journals Improved mitochondrial function in salmon (Salmo salar) following high temperature acclimation suggests that there are cracks in the proverbial ‘ceiling’

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Lucie Gerber ◽  
Kathy A. Clow ◽  
Felix C. Mark ◽  
Anthony K. Gamperl

AbstractMitochondrial function can provide key insights into how fish will respond to climate change, due to its important role in heart performance, energy metabolism and oxidative stress. However, whether warm acclimation can maintain or improve the energetic status of the fish heart when exposed to short-term heat stress is not well understood. We acclimated Atlantic salmon, a highly aerobic eurythermal species, to 12 and 20 °C, then measured cardiac mitochondrial functionality and integrity at 20 °C and at 24, 26 and 28 °C (this species’ critical thermal maximum ± 2 °C). Acclimation to 20 °C vs. 12 °C enhanced many aspects of mitochondrial respiratory capacity and efficiency up to 24 °C, and preserved outer mitochondrial membrane integrity up to 26 °C. Further, reactive oxygen species (ROS) production was dramatically decreased at all temperatures. These data suggest that salmon acclimated to ‘normal’ maximum summer temperatures are capable of surviving all but the most extreme ocean heat waves, and that there is no ‘tradeoff’ in heart mitochondrial function when Atlantic salmon are acclimated to high temperatures (i.e., increased oxidative phosphorylation does not result in heightened ROS production). This study suggests that fish species may show quite different acclimatory responses when exposed to prolonged high temperatures, and thus, susceptibility to climate warming.

2020 ◽  
pp. jeb.236257
Author(s):  
Lucie Gerber ◽  
Kathy A. Clow ◽  
Anthony K. Gamperl

In fishes, the capacity of thermal acclimation to preserve cardiac mitochondrial function under future warming scenarios is important to understand given the central role that cardiac energy metabolism and performance play in this taxa's thermal tolerance. We acclimated Atlantic salmon to 12 and 20°C (for>2 months), and investigated the effects of acute and chronic warming on cardiac mitochondrial respiration and ROS production (release rate) using high-resolution fluorespirometry. Further, we compared the sensitivity of mitochondrial respiration to nitric oxide (i.e., the NO IC50), and assessed the mitochondrial response to anoxia-reoxygenation (AR). Acute exposure to 20°C increased maximal mitochondrial respiration by ∼55%, however, the mitochondria's complex I-respiratory control ratio was 17% lower and ROS production was increased by≥60%. Acclimation to 20°C: i) preserved mitochondrial coupling and aerobic capacity; ii) decreased the mitochondria's ROS production by ∼30%; iii) increased the mitochondria's NO IC50 by ∼23%; iv) and improved mitochondrial membrane integrity at 20°C. AR did not affect mitochondrial function at 12°C, but acute exposure to 20°C and AR depressed maximal mitochondrial respiration (by ∼9%) and coupling (by ∼16%) without impacting ROS production. Finally, warm acclimation did not improve the capacity of mitochondria to recover from AR, indicating that there was no ‘cross tolerance’ between these challenges. Our findings provide compelling evidence that thermal plasticity of cardiac mitochondrial function contributes to the Atlantic salmon's capability to survive at≥20°C for prolonged periods, but question whether this plasticity may allow them to withstand high temperatures when combined with other stressors.


2020 ◽  
Vol 41 (Supplement_2) ◽  
Author(s):  
J Borger ◽  
D Scheiber ◽  
P Horn ◽  
D Pesta ◽  
U Boeken ◽  
...  

Abstract Background Alterations of mitochondrial function have been identified to play a role in Heart Failure (HF) pathophysiology. Oxidative phosphorylation (OXPHOS) capacity of the myocardium was shown to be reduced in the failing heart. Ineffective mitochondrial function promotes formation of reactive oxygen species (ROS) that may affect remodelling in ischemia. Thus far, human mitochondrial function comparing dilated cardiomyopathy (DCM) and ischemic cardiomyopathy (ICM) resembling the main aetiologies of heart failure with reduced ejection fraction (HFrEF) has not been investigated. Purpose We hypothesised that 1. ROS production is elevated in left ventricular myocardial tissue specimens of ICM patients compared to DCM. 2. Mitochondrial OXPHOS capacity is higher in left ventricular myocardial tissue specimens of DCM compared to ICM patients. Methods Myocardial tissue was obtained from the left ventricular apex from 63 patients (38 ICM, 25 DCM) with advanced HFrEF requiring implantation of a Left Ventricular Assist Device (LVAD). We performed high-resolution respirometry (HRR, OROBOROS Oxygraph-2k) in saponine-permeabilised myocardial fibres and measured ROS production fluoroscopically via the Amplex Red method. Statistical analysis was conducted using GraphPad Prism 7 and IBM SPSS v26.0. Results Groups were of comparable age (61.5±1.2 vs. 59.3±2.4 years, p=n.s.), sex (87% vs 85% male, p=n.s.), diabetic status (32% vs 38.4% type 2 diabetes mellitus, p=n.s.), and body mass index (28.1±0.8 vs. 26.3±1.1 kg/m2, p=n.s.). We detected reduced myocardial mitochondrial OXPHOS capacity in ICM under state 3 conditions by about 15% (68.7±34.0 vs. 80.9±30.5 pmol/(s*mg), p<0.05), after addition of Glutamate by 25% (78.9±38.7 vs. 104.8±41.2 pmol/(s*mg), p<0.01) as well as after Succinate (115.5±65.5 vs. 155±62.0 pmol/(s*mg), p<0.01), uncoupling agent FCCP (114.1±56.8 vs. 150.5±47.3 pmol/(s*mg), p<0.01), and by about 40% after addition of Complex I inhibitor Rotenone (55.5±25.9 vs. 96.9±28.0 pmol/(s*mg), p<0.001). We detected no difference in ROS production between ICM and DCM (0.6±0.05 vs. 0.76±0.08 pmol/(s*ml), p=n.s.). Conclusion This is the first human study deciphering distinct alterations in mitochondrial function (OXPHOS capacity) in ventricular myocardium of HFrEF patients. Future studies may address how distinct metabolic patterns at the time of implantation may relate to long-term outcome of HFrEF in terms of remodelling and recovery. Funding Acknowledgement Type of funding source: Public grant(s) – National budget only. Main funding source(s): DFG (German Research Foundation)


2013 ◽  
Vol 91 (8) ◽  
pp. 593-600 ◽  
Author(s):  
Oana M. Duicu ◽  
Silvia N. Mirica ◽  
Dorina E. Gheorgheosu ◽  
Andreea I. Privistirescu ◽  
Ovidiu Fira-Mladinescu ◽  
...  

It is widely recognized that mitochondrial dysfunction is a key component of the multifactorial process of ageing. The effects of age on individual components of mitochondrial function vary across species and strains. In this study we investigated the oxygen consumption, the mitochondrial membrane potential (Δψ), the sensitivity of mitochondrial permeability transition pore (mPTP) to calcium overload, and the production of reactive oxygen species (ROS) in heart mitochondria isolated from old compared with adult healthy Sprague–Dawley rats. Respirometry studies and Δψ measurements were performed with an Oxygraph-2k equipped with a tetraphenylphosphonium electrode. ROS production and calcium retention capacity were measured spectrofluorimetrically. Our results show an important decline for all bioenergetic parameters for both complex I and complex II supported-respiration, a decreased Δψ in mitochondria energized with complex I substrates, and an increased mitochondrial ROS production in the old compared with the adult group. Mitochondrial sensitivity to Ca2+-induced mPTP opening was also increased in the old compared with the adult animals. Moreover, the protective effect of cyclosporine A on mPTP opening was significantly reduced in the old group. We conclude that healthy ageing is associated with a decrease in heart mitochondria function in Sprague–Dawley rats.


2021 ◽  
Author(s):  
Natalia Korhonen ◽  
Otto Hyvärinen ◽  
Matti Kämäräinen ◽  
Kirsti Jylhä

<p>Severe heatwaves have harmful impacts on ecosystems and society. Early warning of heat waves help with decreasing their harmful impact. Previous research shows that the Extended Range Forecasts (ERF) of the European Centre for Medium-Range Weather Forecasts (ECMWF) have over Europe a somewhat higher reforecast skill for extreme hot summer temperatures than for long-term mean temperatures. Also it has been shown that the reforecast skill of the ERFs of the ECMWF was strongly increased by the most severe heat waves (the European heatwave 2003 and the Russian heatwave 2010).</p><p>Our aim is to be able to estimate the skill of a heat wave forecast at the time the forecast is given. For that we investigated the spatial and temporal reforecast skill of the ERFs of the ECMWF to forecast hot days (here defined as a day on which the 5 days running mean surface temperature is above its summer 90<sup>th</sup> percentile) in the continental Europe in summers 2000-2019. We used the ECMWF 2-meter temperature reforecasts and verified them against the ERA5 reanalysis. The skill of the hot day reforecasts was estimated by the symmetric extremal dependence index (SEDI) which considers both hit rates and false alarm rates of the hot day forecasts. Further, we investigated the skill of the heatwave reforecasts based on at which time steps of the forecast the hot days were forecasted. We found that on the mesoscale (horizontal scale of ~500 km) the ERFs of the ECMWF were most skillful in predicting the life cycle of a heat wave (lasting up to 25 days) about a week before its start and during its course. That is, on the mesoscale those reforecasts, in which hot day(s) were forecasted to occur during the first 7…11 days, were more skillful on lead times up to 25 days than the rest of the heat wave forecasts. This finding is valuable information, e.g., in the energy and health sectors while preparing for a coming heat wave.</p><p>The work presented here is part of the research project HEATCLIM (Heat and health in the changing climate) funded by the Academy of Finland.</p>


2015 ◽  
Vol 117 (suppl_1) ◽  
Author(s):  
Rimpy Dhingra ◽  
Victoria Margulets ◽  
Davinder Jassal ◽  
Gerald Dorn II ◽  
Lorrie A. Kirshenbaum

Doxorubicin is known for its cardiotoxic effects and inducing cardiac failure, however, the underlying mechanisms remain cryptic. Earlier we established the inducible - death protein, Bcl-2-like Nineteen- Kilodalton- Interacting - Protein 3 (Bnip3) to be crucial for disrupting mitochondrial function and inducing cell death of cardiac myocytes. Whether Bnip3 underlies cardiotoxic effects of doxorubicin toxicity is unknown. Herein we demonstrate a novel signaling pathway that functionally links activation and preferential mitochondrial targeting of Bnip3 to the cardiotoxic properties of doxorubicin. Perturbations to mitochondria including increased calcium loading, ROS, loss of αΨm and mPTP opening were observed in cardiac myocytes treated with doxorubicin. In mitochondria, Bnip3 forms strong association with Cytochrome c oxidase subunit1 (COX1) of respiratory chain and displaces uncoupling protein 3 (UCP3) resulting in increased ROS production, decline in maximal and reserved respiration capacity and cell viability. Impaired mitochondrial function was accompanied by an accumulated increase in autophagosomes and necrosis demonstrated by increase release of LDH, cTnT and loss of nuclear High Mobility Group Protein 1 (HMGB-1) immunoreactivity. Interestingly, pharmacological or genetic inhibition of autophagy with 3-methyl adenine (3-MA), or Atg7 knock-down suppressed necrotic cell death induced by doxorubicin. Loss of function of Bnip3 restored UCP3-COX complexes, mitochondrial respiratory integrity and abrogated necrotic cell death induced by doxorubicin. Mice germ-line deficient for Bnip3 were resistant to doxorubicin cardiotoxicity displaying normal mitochondrial morphology, cardiac function and survival rates comparable to vehicle treated mice. The findings of the present study demonstrate that doxorubicin provokes maladaptive autophagy and necrotic cell death of ventricular myocytes that is mutually dependent and obligatorily linked to Bnip3.


2019 ◽  
Vol 10 (02) ◽  
pp. 1950005 ◽  
Author(s):  
FRANK VÖHRINGER ◽  
MARC VIELLE ◽  
PHILIPPE THALMANN ◽  
ANITA FREHNER ◽  
WOLFGANG KNOKE ◽  
...  

Understanding the economic magnitude of climate change (CC) impacts is a prerequisite for developing adequate adaptation strategies. In Switzerland, despite new climate scenarios and impact studies, only few impacts have been monetized. Our objective is to assess costs and opportunities of CC for Switzerland by 2060, while enhancing the assessment methods. Using inputs from bottom-up impact studies, we simulate the economic consequences of climate scenarios in a computable general equilibrium (CGE) framework. We cover health, buildings/infrastructure, energy, water, agriculture, tourism, the spill-overs to other sectors, and international effects. Due to data constraints, significant impacts have not been quantified, e.g., for heat waves and droughts more extreme than the 2060 average climate. For the considered impacts, welfare decreases by 0.37% to 1.37% in 2060 relative to a reference without CC. Higher summer temperatures increase mortality and decrease productivity. Contrariwise, tourism benefits from extended summer seasons. Regarding energy, increased demand for cooling is overcompensated by savings in heating.


2019 ◽  
Vol 20 (23) ◽  
pp. 6086 ◽  
Author(s):  
Meng Xu ◽  
Qing Ma ◽  
Chunlan Fan ◽  
Xue Chen ◽  
Huiming Zhang ◽  
...  

This study aimed to evaluate whether ginsenosides Rb1 (20-S-protopanaxadiol aglycon) and Rg1 (20-S-protopanaxatriol aglycon) have mitochondrial protective effects against oxygen-glucose deprivation/reoxygenation (OGD/R)-induced injury in primary mouse astrocytes and to explore the mechanisms involved. The OGD/R model was used to mimic the pathological process of cerebral ischemia-reperfusion in vitro. Astrocytes were treated with normal conditions, OGD/R, OGD/R plus Rb1, or OGD/R plus Rg1. Cell viability was measured to evaluate the cytotoxicity of Rb1 and Rg1. Intracellular reactive oxygen species (ROS) and catalase (CAT) were detected to evaluate oxidative stress. The mitochondrial DNA (mtDNA) copy number and mitochondrial membrane potential (MMP) were measured to evaluate mitochondrial function. The activities of the mitochondrial respiratory chain (MRC) complexes I–V and the level of cellular adenosine triphosphate (ATP) were measured to evaluate oxidative phosphorylation (OXPHOS) levels. Cell viability was significantly decreased in the OGD/R group compared to the control group. Rb1 or Rg1 administration significantly increased cell viability. Moreover, OGD/R caused a significant increase in ROS formation and, subsequently, it decreased the activity of CAT and the mtDNA copy number. At the same time, treatment with OGD/R depolarized the MMP in the astrocytes. Rb1 or Rg1 administration reduced ROS production, increased CAT activity, elevated the mtDNA content, and attenuated the MMP depolarization. In addition, Rb1 or Rg1 administration increased the activities of complexes I, II, III, and V and elevated the level of ATP, compared to those in the OGD/R groups. Rb1 and Rg1 have different chemical structures, but exert similar protective effects against astrocyte damage induced by OGD/R. The mechanism may be related to improved efficiency of mitochondrial oxidative phosphorylation and the reduction in ROS production in cultured astrocytes.


2020 ◽  
Vol 9 (7) ◽  
pp. 2155
Author(s):  
Francesca Iannantuoni ◽  
Aranzazu M. de Marañon ◽  
Zaida Abad-Jiménez ◽  
Francisco Canet ◽  
Pedro Díaz-Pozo ◽  
...  

Type 1 diabetes has been associated with oxidative stress. This study evaluates the rates of oxidative stress, mitochondrial function, leukocyte–endothelium interactions and adhesion molecules in type 1 diabetic patients. The study population consisted of 52 diabetic patients and 46 body-composition and age-matched controls. We assessed anthropometric and metabolic parameters, oxidative stress and mitochondrial function by evaluating reactive oxygen species (ROS) production, mitochondrial ROS production, mitochondrial membrane potential and superoxide dismutase (SOD) and catalase (CAT) expression in polymorphonuclear leukocytes from type 1 diabetic patients. In addition, we evaluated interactions between leukocytes and human umbilical vein endothelial cells (HUVEC), and serum expression of adhesion molecules (P-selectin, VCAM-1 and ICAM-1), proinflammatory cytokines (IL-6 and TNFα) and myeloperoxidase (MPO). HbA1C and glucose levels were higher in diabetic patients than in control subjects, as expected. Mitochondrial function was altered and leukocyte–endothelium interactions were enhanced in diabetic patients, which was evident in the increase in total and mitochondrial ROS production, higher mitochondrial membrane potential, enhanced leukocyte rolling and adhesion, and decreased rolling velocity. Furthermore, we observed an increase in levels of adhesion molecules P-selectin, VCAM-1, and ICAM-1 in these subjects. In addition, type 1 diabetic patients exhibited an increase in proinflammatory mediators TNFα and MPO, and a decreased expression of SOD. The enhancement of leukocyte–endothelium interactions and proinflammatory markers correlated with glucose and HbA1Clevels. Mitochondrial alteration, oxidative stress, and enhanced leukocyte–endothelium interactions are features of type 1 diabetes and may be related to cardiovascular implications.


Antioxidants ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 171 ◽  
Author(s):  
Anne D. Hafstad ◽  
Synne S. Hansen ◽  
Jim Lund ◽  
Celio X. C. Santos ◽  
Neoma T. Boardman ◽  
...  

Obesity and diabetes are independent risk factors for cardiovascular diseases, and they are associated with the development of a specific cardiomyopathy with elevated myocardial oxygen consumption (MVO2) and impaired cardiac efficiency. Although the pathophysiology of this cardiomyopathy is multifactorial and complex, reactive oxygen species (ROS) may play an important role. One of the major ROS-generating enzymes in the cardiomyocytes is nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 2 (NOX2), and many potential systemic activators of NOX2 are elevated in obesity and diabetes. We hypothesized that NOX2 activity would influence cardiac energetics and/or the progression of ventricular dysfunction following obesity. Myocardial ROS content and mechanoenergetics were measured in the hearts from diet-induced-obese wild type (DIOWT) and global NOK2 knock-out mice (DIOKO) and in diet-induced obese C57BL/6J mice given normal water (DIO) or water supplemented with the NOX2-inhibitor apocynin (DIOAPO). Mitochondrial function and ROS production were also assessed in DIO and DIOAPO mice. This study demonstrated that ablation and pharmacological inhibition of NOX2 both improved mechanical efficiency and reduced MVO2 for non-mechanical cardiac work. Mitochondrial ROS production was also reduced following NOX2 inhibition, while cardiac mitochondrial function was not markedly altered by apocynin-treatment. Therefore, these results indicate a link between obesity-induced myocardial oxygen wasting, NOX2 activation, and mitochondrial ROS.


2019 ◽  
Vol 12 (588) ◽  
pp. eaaw3159 ◽  
Author(s):  
Tal Yardeni ◽  
Ceylan E. Tanes ◽  
Kyle Bittinger ◽  
Lisa M. Mattei ◽  
Patrick M. Schaefer ◽  
...  

Changes in the gut microbiota and the mitochondrial genome are both linked with the development of disease. To investigate why, we examined the gut microbiota of mice harboring various mutations in genes that alter mitochondrial function. These studies revealed that mitochondrial genetic variations altered the composition of the gut microbiota community. In cross-fostering studies, we found that although the initial microbiota community of newborn mice was that obtained from the nursing mother, the microbiota community progressed toward that characteristic of the microbiome of unfostered pups of the same genotype within 2 months. Analysis of the mitochondrial DNA variants associated with altered gut microbiota suggested that microbiome species diversity correlated with host reactive oxygen species (ROS) production. To determine whether the abundance of ROS could alter the gut microbiota, mice were aged, treated with N-acetylcysteine, or engineered to express the ROS scavenger catalase specifically within the mitochondria. All three conditions altered the microbiota from that initially established. Thus, these data suggest that the mitochondrial genotype modulates both ROS production and the species diversity of the gut microbiome, implying that the connection between the gut microbiome and common disease phenotypes might be due to underlying changes in mitochondrial function.


Sign in / Sign up

Export Citation Format

Share Document