scholarly journals Lipid metabolism in Calanus finmarchicus is sensitive to variations in predation risk and food availability

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Elise Skottene ◽  
Ann M. Tarrant ◽  
Dag Altin ◽  
Rolf Erik Olsen ◽  
Marvin Choquet ◽  
...  

AbstractLate developmental stages of the marine copepods in the genus Calanus can spend extended periods in a dormant stage (diapause) that is preceded by the accumulation of large lipid stores. We assessed how lipid metabolism during development from the C4 stage to adult is altered in response to predation risk and varying food availability, to ultimately understand more of the metabolic processes during development in Calanus copepods. We used RNA sequencing to assess if perceived predation risk in combination with varied food availability affects expression of genes associated with lipid metabolism and diapause preparation in C. finmarchicus. The lipid metabolism response to predation risk differed depending on food availability, time and life stage. Predation risk caused upregulation of lipid catabolism with high food, and downregulation with low food. Under low food conditions, predation risk disrupted lipid accumulation. The copepods showed no clear signs of diapause preparation, supporting earlier observations of the importance of multiple environmental cues in inducing diapause in C. finmarchicus. This study demonstrates that lipid metabolism is a sensitive endpoint for the interacting environmental effects of predation pressure and food availability. As diapause may be controlled by lipid accumulation, our findings may contribute towards understanding processes that can ultimately influence diapause timing.

2021 ◽  
Author(s):  
Noha Saad ◽  
Ceyhun Bereketoglu ◽  
Ajay Pradhan

Plasticizers are commonly used in different consumer goods and personal care products to provide flexibility, durability and elasticity to polymers. Due to their reported toxicity, the use of several plasticizers including phthalates has been regulated and/or banned from the market. Di(isononyl) cyclohexane-1,2-dicarboxylate (DINCH) is an alternative plasticizer that was introduced to replace toxic plasticizers. Increasing global demand and lack of information regarding toxicity and safety assessment of DINCH have raised the concern to human and animal health. Hence, in the present study, we investigated the adverse effects of DINCH (at concentrations ranging from 0.01 to 10 μM) in early developmental stages of zebrafish using different endpoints such as hatching rate, developmental abnormalities, lipid metabolism, behavior analysis and gene expression. We found that DINCH caused hatching delay in a dose-dependent manner and altered the expression of genes involved in stress response. Lipid staining using Oil Red O stain showed a slight lipid accumulation around the yolk, brain, eye and neck with increasing concentration. Genes associated with lipid metabolism such as fatty acid synthesis, β-oxidation, elongation, lipid transport were significantly altered by DINCH. Behavioral analysis of larvae demonstrated a distinct locomotor activity including distance and acceleration upon exposure to DINCH both in light and dark. Genes involved in cholesterol biosynthesis and homeostasis were also affected by DINCH indicating possible developmental neurotoxicity. The present data shows that DINCH could induce physiological and metabolic toxicity to aquatic organisms. Hence, further analyses and environmental monitoring on DINCH should be conducted to determine its safety and toxicity levels.


2017 ◽  
Vol 18 (7) ◽  
pp. 1330 ◽  
Author(s):  
Manal Almatrafi ◽  
Marcela Vergara-Jimenez ◽  
Ana Murillo ◽  
Gregory Norris ◽  
Christopher Blesso ◽  
...  

2017 ◽  
Author(s):  
JF Clark ◽  
M Meade ◽  
G Ranepura ◽  
DH Hall ◽  
C Savage-Dunn

AbstractMetabolic homeostasis is coordinately controlled by diverse inputs, which must be understood to combat metabolic disorders. Here we introduce DBL-1, the C. elegans BMP2/4 homolog, as a significant regulator of lipid homeostasis. We used neutral lipid staining and a lipid droplet marker to demonstrate that both increases and decreases in DBL-1/BMP signaling result in reduced lipid stores and lipid droplet count. We find that lipid droplet size, however, correlates positively with the level of DBL 1/BMP signaling. Regulation of lipid accumulation in the intestine occurs through non-cell-autonomous signaling, since expression of SMA-3, a Smad signal transducer, in the epidermis (hypodermis) is sufficient to rescue the loss of lipid accumulation. Finally, genetic evidence indicates that DBL-1/BMP functions upstream of Insulin/IGF-1 Signaling (IIS) in lipid metabolism. We conclude that BMP signaling regulates lipid metabolism in C. elegans through inter-organ signaling to IIS, shedding light on a less well-studied regulatory mechanism for metabolic homeostasis.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Jiaqi Liu ◽  
Jie Li ◽  
Wentao Chen ◽  
Xintao Xie ◽  
Xingang Chu ◽  
...  

Abstract Background Meat quality is largely driven by fat deposition, which is regulated by several genes and signaling pathways. The cyclic adenosine monophosphate (cAMP) -regulated transcriptional coactivator 3 (CRTC3) is a coactivator of cAMP response element binding protein (CREB) that mediates the function of protein kinase A (PKA) signaling pathway and is involved in various biological processes including lipid and energy metabolism. However, the effects of CRTC3 on the metabolome and transcriptome of porcine subcutaneous adipocytes have not been studied yet. Here, we tested whether porcine CRTC3 expression would be related to fat deposition in Heigai pigs (a local fatty breed in China) and Duroc×Landrace×Yorkshire (DLY, a lean breed) pigs in vivo. The effects of adenovirus-induced CRTC3 overexpression on the metabolomic and transcriptomic profiles of subcutaneous adipocytes were also determined in vitro by performing mass spectrometry-based metabolomics combined with RNA sequencing (RNA-seq). Results Porcine CRTC3 expression is associated with fat deposition in vivo. In addition, CRTC3 overexpression increased lipid accumulation and the expression of mature adipocyte-related genes in cultured porcine subcutaneous adipocytes. According to the metabolomic analysis, CRTC3 overexpression induced significant changes in adipocyte lipid, amino acid and nucleotide metabolites in vitro. The RNA-seq analysis suggested that CRTC3 overexpression alters the expression of genes and pathways involved in adipogenesis, fatty acid metabolism and glycerophospholipid metabolism in vitro. Conclusions We identified significant alterations in the metabolite composition and the expression of genes and pathways involved in lipid metabolism in CRTC3-overexpressing adipocytes. Our results suggest that CRTC3 might play an important regulatory role in lipid metabolism and thus affects lipid accumulation in porcine subcutaneous adipocytes.


2021 ◽  
Vol 12 ◽  
Author(s):  
Shuzhe Wang ◽  
Cuili Pan ◽  
Xiaojie Ma ◽  
Chaoyun Yang ◽  
Lin Tang ◽  
...  

The buffalo population is extensive in China, but its meat quality is relatively inferior. Therefore, improving meat quality should be one of the breeding goals. microRNAs (miRNAs) play an essential regulatory role in the post-transcriptional expression of genes. Some studies have reported their function regulating genes related to fat deposition and adipocyte differentiation in cattle, but there is limited reports in buffalo. We performed small RNA transcriptome sequencing of Xinyang buffalo adipose tissue between calves and adults in this study. As a result, 282 mature miRNAs were significantly differentially expressed, and co-expression analysis showed that 454 miRNAs were significantly associated with developmental stages. Target gene identification, GO (gene ontology) annotation, and KEGG analysis of miRNAs showed that miR-195, miR-192, and miR-24-3p could target key genes for lipogenesis and thus regulate adipose deposition and differentiation. Among them, miR-195 was significantly upregulated in adipose tissue and induced adipocytes of adult buffaloes, and its overexpression significantly inhibited lipid accumulation in primary adipocytes. Dual-luciferase reporter gene analysis showed that miR-195 reduced the expression of thyroid hormone response protein (THRSP) by targeting its 3′ untranslated terminal region, suggesting that miR-195 may inhibit lipid accumulation in adipocytes by regulating THRSP. The results confirmed the reliability of predictive screening of miRNAs and provided theoretical support for buffalo fattening.


Nutrients ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 2809
Author(s):  
Chih-Chung Wu ◽  
Yu-Wen Huang ◽  
Chih-Yao Hou ◽  
Ya-Ting Chen ◽  
Cheng-Di Dong ◽  
...  

Lemon (Citrus limon) has antioxidant, immunoregulatory, and blood lipid-lowering properties. This study aimed to determine the effect of the lemon fermented product (LFP) which is lemon fermented with Lactobacillus OPC1 to prevent obesity. The inhibition of lipid accumulation in 3T3-L1 adipocytes is examined using a Wistar rat model fed a high-fat diet to verify the anti-obesity efficacy and mechanism of LFP. Here, it was observed that LFP reduced cell proliferation and inhibited the lipid accumulation (8.3%) of 3T3-L1 adipocytes. Additionally, LFP reduced body weight (9.7%) and fat tissue weight (25.7%) of rats; reduced serum TG (17.0%), FFA (17.9%), glucose (29.3%) and ketone body (6.8%); and increased serum HDL-C (17.6%) and lipase activity (17.8%). LFP regulated the mRNA expression of genes related to lipid metabolism (PPARγ, C/EBPα, SREBP-1c, HSL, ATGL, FAS, and AMPK). Therefore, LFP reduces body weight and lipid accumulation by regulating the mRNA expression of genes related to lipid metabolism. Overall, our results implicate LFP as a potential dietary supplement for the prevention of obesity.


2019 ◽  
Vol 39 (12) ◽  
Author(s):  
Shanyan Gao ◽  
Xiang Gan ◽  
Hua He ◽  
Shenqiang Hu ◽  
Yan Deng ◽  
...  

Abstract Previous studies have shown that lipid metabolism in granulosa cells (GCs) plays a vital role during mammalian ovarian follicular development. However, little research has been done on lipid metabolism in avian follicular GCs. The goal of the present study was to investigate the dynamic characteristics of lipid metabolism in GCs from geese pre-hierarchical (6–10 mm) and hierarchical (F4-F2 and F1) follicles during a 6-day period of in vitro culture. Oil red O staining showed that with the increasing incubation time, the amount of lipids accumulated in three cohorts of GCs increased gradually, reached the maxima after 96 h of culture, and then decreased. Moreover, the lipid content varied among these three cohorts, with the highest in F1 GCs. The qPCR results showed genes related to lipid synthesis and oxidation were highest expressed in pre-hierarchical GCs, while those related to lipid transport and deposition were highest expressed in hierarchical GCs. These results suggested that the amount of intracellular lipids in GCs increases with both the follicular diameter and culture time, which is accompanied by significant changes in expression of genes related to lipid metabolism. Therefore, it is postulated that the lipid accumulation capacity of geese GCs depends on the stage of follicle development and is finely regulated by the differential expression of genes related to lipid metabolism.


2021 ◽  
Vol 15 (1) ◽  
pp. 21-35
Author(s):  
Yana Geng ◽  
Klaas Nico Faber ◽  
Vincent E. de Meijer ◽  
Hans Blokzijl ◽  
Han Moshage

Abstract Background Non-alcoholic fatty liver disease (NAFLD), characterized as excess lipid accumulation in the liver which is not due to alcohol use, has emerged as one of the major health problems around the world. The dysregulated lipid metabolism creates a lipotoxic environment which promotes the development of NAFLD, especially the progression from simple steatosis (NAFL) to non-alcoholic steatohepatitis (NASH). Purposeand Aim This review focuses on the mechanisms of lipid accumulation in the liver, with an emphasis on the metabolic fate of free fatty acids (FFAs) in NAFLD and presents an update on the relevant cellular processes/mechanisms that are involved in lipotoxicity. The changes in the levels of various lipid species that result from the imbalance between lipolysis/lipid uptake/lipogenesis and lipid oxidation/secretion can cause organellar dysfunction, e.g. ER stress, mitochondrial dysfunction, lysosomal dysfunction, JNK activation, secretion of extracellular vesicles (EVs) and aggravate (or be exacerbated by) hypoxia which ultimately lead to cell death. The aim of this review is to provide an overview of how abnormal lipid metabolism leads to lipotoxicity and the cellular mechanisms of lipotoxicity in the context of NAFLD.


Sign in / Sign up

Export Citation Format

Share Document