scholarly journals Lead-free relaxor-ferroelectric thin films for energy harvesting from low-grade waste-heat

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Amrit P. Sharma ◽  
Makhes K. Behera ◽  
Dhiren K. Pradhan ◽  
Sangram K. Pradhan ◽  
Carl E. Bonner ◽  
...  

AbstractOne of the ways to mitigate the world energy crisis is to harvest clean and green energy from waste-heat, which is abundant, ubiquitous, and free. Energy harvesting of this waste-heat is one of the most encouraging methods to capture freely accessible electrical energy. Ferroelectric materials can be used to harvest energy for low power electronic devices, as they exhibit switchable polarization, excellent piezoelectric and pyroelectric properties. The most important characteristic of ferroelectric materials, in the context of energy harvesting, is their ability to generate electric power from a time-dependent temperature change. In this work, we grew highly c-axis oriented heterostructures of BaZr0.2Ti0.8O3 (barium zirconium titanate, BZT)/Ba0.7Ca0.3TiO3 (barium calcium titanate, BCT) on SrRuO3 (strontium ruthenate, SRO) and deposited on SrTiO3 (strontium titanate, STO) single crystalline substrate using pulsed laser deposition (PLD) technique. We investigated the structural, electrical, dielectric, and pyroelectric properties of the above-mentioned fabricated heterostructures. The wide range of θ–2θ X-ray diffraction (XRD) patterns only shows (00l) reflection peaks of heterostructures and the substrate which confirmed that the films are highly c-axis oriented. We are also capable to convert the low-grade waste-heat into electrical energy by measuring various temperature-dependent ferroelectric hysteresis loops of our nanostructure films via pyroelectric Ericsson cycles and the structures show an energy conversion density ~ 10,970 kJ/m3 per cycle. These devices exhibit a large pyroelectric current density of ~ 25 mA/m2 with 11.8 °C of temperature fluctuation and the corresponding pyroelectric coefficient of 3425 μC/m2K. Our research findings suggest that these lead-free relaxor-ferroelectric heterostructures might be the potential candidates to harvest electrical energy from waste low-grade thermal energy.

2012 ◽  
Vol 476-478 ◽  
pp. 1336-1340
Author(s):  
Kai Feng Li ◽  
Rong Liu ◽  
Lin Xiang Wang

The concept of energy harvesting works towards developing self-powered devices that do not require replaceable power supplies. Energy scavenging devices are designed to capture the ambient energy surrounding the electronics and convert it into usable electrical energy. A number of sources of harvestable ambient energy exist, including waste heat, vibration, electromagnetic waves, wind, flowing water, and solar energy. While each of these sources of energy can be effectively used to power remote sensors, the structural and biological communities have placed an emphasis on scavenging vibrational energy with ferroelectric materials. Ferroelectric materials have a crystalline structure that provide a unique ability to convert an applied electrical potential into a mechanical strain or vice versa. Based on the properties of the material, this paper investigates the technique of power harvesting and storage.


2020 ◽  
Vol 142 (8) ◽  
Author(s):  
Makita R. Phillips ◽  
Gregory P. Carman

Abstract The abundance of low-grade waste heat necessitates energy harvesting devices to convert thermal energy to electrical energy. Through magnetic transduction, thermomagnetics can perform this conversion at reasonable efficiencies. Thermomagnetic materials use thermal energy to switch between magnetic and non-magnetic states and convert thermal energy into electrical energy. In this study, we numerically analyzed an active thermomagnetic device for thermal energy harvesting composed of gadolinium (Gd) and neodymium iron boron (NdFeB). A parametric study to determine the device efficiency was conducted by varying the gap distance, heat source temperature, and Gd thickness. Furthermore, the effect of the thermal conductance and applied field was also evaluated. It was found that the relative efficiency for smaller gap distances ranges from ∼15% to 28%; the largest allowable volume of Gd should be used and higher applied field leads to higher efficiencies.


2021 ◽  
Author(s):  
José Correia ◽  
Cátia Rodrigues ◽  
Ricardo Esteves ◽  
Ricardo Cesar Bezerra de Melo ◽  
José Gutiérrez ◽  
...  

Abstract Environmental and safety sensing is becoming of high importance in the oil and gas upstream industry. However, present solutions to feed theses sensors are expensive and dangerous and there is so far no technology able to generate electrical energy in the operational conditions of oil and gas extraction wells. In this paper it is presented, for the first time in a relevant environment, a pioneering energy harvesting technology based on nanomaterials that takes advantage of fluid movement in oil extraction wells. A device was tested to power monitoring systems with locally harvested energy in harsh conditions environment (pressures up to 50 bar and temperatures of 50ºC). Even though this technology is in an early development stage this work opens a wide range of possible applications in deep underwater environments and in Oil and Gas extraction wells where continuous flow conditions are present.


2018 ◽  
Vol 2 (8) ◽  
pp. 1806-1812 ◽  
Author(s):  
Abuzar Taheri ◽  
Douglas R. MacFarlane ◽  
Cristina Pozo-Gonzalo ◽  
Jennifer M. Pringle

Towards the development of stable thermocells for harvesting low-grade waste heat, non-volatile and flexible electrolyte films are reported.


MRS Bulletin ◽  
1996 ◽  
Vol 21 (6) ◽  
pp. 25-30 ◽  
Author(s):  
O. Auciello ◽  
A.I. Kingon ◽  
S.B. Krupanidhi

Ferroelectric films can display a wide range of dielectric, ferroelectric, piezoelectric, electrostrictive, and pyroelectric properties. The potential utilization of these properties in a new generation of devices has driven the intensive studies on the synthesis, characterization, and determination of processing-microstructure-property relationships of ferroelectric thin films during the last five years. In addition there has been an increased drive for integrating ferroelectric film-based heterostructures with different substrate materials to demonstrate numerous devices that exploit the dielectric, ferroelectric, piezoelectric, electrostrictive, and pyroelectric properties of these materials. For example the high dielectric permittivities of perovskite-type materials can be advantageously used in dynamic random-access memories (DRAMs), while the large values of switchable remanent polarization of ferroelectric materials are suitable for nonvolatile ferroelectric random-access memories (NVFRAMs).Various vapor-phase deposition techniques such as plasma and ion-beam sputter deposition (PSD and IBSD, respectively), pulsed laser-ablation deposition (PLAD), electron-beam or oven-induced evaporation for molecular-beam epitaxy (MBE), and chemical vapor deposition (CVD) have been applied to produce ferroelectric films and layered heterostructures. See References 4–7 for recent reviews. However, work is still necessary to optimize the techniques to produce device-quality films on large semiconductor substrates in a way that is fully compatible with existing semiconductor process technology. Therefore research efforts should be focused on the optimization of suitable process methods and on the investigation of processing-composition-microstructure property relationships. These efforts are the focus of this article with emphasis on PSD and IBSD techniques.


Author(s):  
Mihail O. Cernaianu ◽  
Aurel Gontean

The authors propose in this chapter an original, self-sustainable, power supply system for wireless monitoring applications that is powered from an energy harvesting device based on thermoelectric generators (TEGs). The energy harvesting system's purpose is to gather the waste heat from low temperature sources (<90°C), convert it to electrical energy and store it into rechargeable batteries. The energy harvesting system must be able to power a so-called condition monitoring system (CMS) that is used for the monitoring of heat dissipation equipment. The setup used for measurements (including mechanical details) and the experiments are described along with all the essential results of the research. The electronic system design is emphasized and various options are discussed.


MRS Advances ◽  
2018 ◽  
Vol 4 (15) ◽  
pp. 851-855 ◽  
Author(s):  
Robert E. Peale ◽  
Seth Calhoun ◽  
Nagendra Dhakal ◽  
Isaiah O. Oladeji ◽  
Francisco J. González

AbstractThermoelectric (TE) thin films have promise for harvesting electrical energy from waste heat. We demonstrate TE materials and thermocouples deposited by aqueous spray deposition on glass. The n-type material was CdO doped with Mn and Sn. Two p-type materials were investigated, namely PbS with co-growth of CdS and doped with Na and Na2CoO4. Seebeck coefficients, resistivity, and power generation for thermocouples were characterized.


Author(s):  
Heather Lai ◽  
Chin An Tan ◽  
Yong Xu

Human walking requires sophisticated coordination of muscles, tendons, and ligaments working together to provide a constantly changing combination of force, stiffness and damping. In particular, the human knee joint acts as a variable damper, dissipating greater amounts of energy when the knee undergoes large rotational displacements during walking, running or hopping. Typically, this damping results from the dissipation, or loss, of metabolic energy. It has been proven to be possible however; to collect this otherwise wasted energy through the use of electromechanical transducers of several different types which convert mechanical energy to electrical energy. When properly controlled, this type of device not only provides desirable structural damping effects, but the energy generated can be stored for use in a wide range of applications. A novel approach to an energy harvesting knee joint damper is presented using a dielectric elastomer (DE) smart material based electromechanical transducer. Dielectric elastomers are extremely elastic materials with high electrical permittivity which operate based on electrostatic effects. By placing compliant electrodes on either side of a dielectric elastomer film, a specialized capacitor is created, which couples mechanical and electrical energy using induced electrostatic stresses. Dielectric elastomer energy harvesting devices not only have a high energy density, but the material properties are similar to that of human tissue, making it highly suitable for wearable applications. A theoretical framework for dielectric elastomer energy harvesting is presented along with a mapping of the active phases of the energy harvesting to the appropriate phases of the walking stride. Experimental results demonstrating the energy harvesting capability of a DE generator undergoing strains similar to those experienced during walking are provided for the purpose of verifying the theoretical results. The work presented here can be applied to devices for use in rehabilitation of patients with muscular dysfunction and transfemoral prosthesis as well as energy generation for able-bodied wearers.


RSC Advances ◽  
2016 ◽  
Vol 6 (17) ◽  
pp. 14273-14282 ◽  
Author(s):  
Longwen Wu ◽  
Xiaohui Wang ◽  
Longtu Li

High energy density BaTiO3–Bi(Zn2/3Nb1/3)O3 materials with concurrently high energy efficiency.


2017 ◽  
Vol 1 (9) ◽  
pp. 1899-1908 ◽  
Author(s):  
Ravi Anant Kishore ◽  
Shashank Priya

This study demonstrates a novel thermal energy harvesting cycle and provides pathway for low-grade waste heat recovery using magnetocaloric materials.


Sign in / Sign up

Export Citation Format

Share Document