Energy Harvesting Under Harsh Conditions for the Oil & Gas Upstream Industry

2021 ◽  
Author(s):  
José Correia ◽  
Cátia Rodrigues ◽  
Ricardo Esteves ◽  
Ricardo Cesar Bezerra de Melo ◽  
José Gutiérrez ◽  
...  

Abstract Environmental and safety sensing is becoming of high importance in the oil and gas upstream industry. However, present solutions to feed theses sensors are expensive and dangerous and there is so far no technology able to generate electrical energy in the operational conditions of oil and gas extraction wells. In this paper it is presented, for the first time in a relevant environment, a pioneering energy harvesting technology based on nanomaterials that takes advantage of fluid movement in oil extraction wells. A device was tested to power monitoring systems with locally harvested energy in harsh conditions environment (pressures up to 50 bar and temperatures of 50ºC). Even though this technology is in an early development stage this work opens a wide range of possible applications in deep underwater environments and in Oil and Gas extraction wells where continuous flow conditions are present.

Author(s):  
Heather Lai ◽  
Chin An Tan ◽  
Yong Xu

Human walking requires sophisticated coordination of muscles, tendons, and ligaments working together to provide a constantly changing combination of force, stiffness and damping. In particular, the human knee joint acts as a variable damper, dissipating greater amounts of energy when the knee undergoes large rotational displacements during walking, running or hopping. Typically, this damping results from the dissipation, or loss, of metabolic energy. It has been proven to be possible however; to collect this otherwise wasted energy through the use of electromechanical transducers of several different types which convert mechanical energy to electrical energy. When properly controlled, this type of device not only provides desirable structural damping effects, but the energy generated can be stored for use in a wide range of applications. A novel approach to an energy harvesting knee joint damper is presented using a dielectric elastomer (DE) smart material based electromechanical transducer. Dielectric elastomers are extremely elastic materials with high electrical permittivity which operate based on electrostatic effects. By placing compliant electrodes on either side of a dielectric elastomer film, a specialized capacitor is created, which couples mechanical and electrical energy using induced electrostatic stresses. Dielectric elastomer energy harvesting devices not only have a high energy density, but the material properties are similar to that of human tissue, making it highly suitable for wearable applications. A theoretical framework for dielectric elastomer energy harvesting is presented along with a mapping of the active phases of the energy harvesting to the appropriate phases of the walking stride. Experimental results demonstrating the energy harvesting capability of a DE generator undergoing strains similar to those experienced during walking are provided for the purpose of verifying the theoretical results. The work presented here can be applied to devices for use in rehabilitation of patients with muscular dysfunction and transfemoral prosthesis as well as energy generation for able-bodied wearers.


Author(s):  
A. Rasteh ◽  
A. Farokhipour ◽  
M. A. Rasoulian ◽  
Z. Mansoori ◽  
M. Saffar-Avval ◽  
...  

Abstract Fracking (fracturing) is of great importance for enhancing oil and gas production from low permeability reservoirs. Since in fracking fluid, suspension of sand particles are used, the erosion failure of fracturing equipment has become an increasing concern. Accordingly, investigation of erosion of commonly used fittings such as ball seats in order to decrease its adverse consequences has attracted considerable attentions. Although the erosion wear of gas-solid flows in the pipe sudden expansion was investigated in the literature, the effect of particle size, ball seat shape and the contraction configurations on the erosion-induced wear is not fully understood. This study is aimed to explore the most erosion-resistant configuration of a ball seat under various operational conditions. A CFD model is used and a wide range of geometries are investigated. The studied configurations are categorized in three main groups including single cone, double cone and curved cone. In each category, different cone angles and curve styles are considered. The results showed that, among the single cone ball seats, the cone angle of 15° is the most erosion-resistant configuration. It was also shown that the third-order curve style cone has the best erosion performance.


Author(s):  
Shaofan Qi ◽  
Roger Shuttleworth ◽  
S. Olutunde Oyadiji

Energy harvesting is the process of converting low level ambient energy into usable electrical energy, so that remote electronic instruments can be powered without the need for batteries or other supplies. Piezoelectric material has the ability to convert mechanical energy into electrical energy, and cantilever type harvesters using this material are being intensely investigated. The typical single cantilever energy harvester design has a limited bandwidth, and is restricted in ability for converting environmental vibration occurring over a wide range of frequencies. A multiple cantilever piezoelectric generator that works over a range of frequencies, yet has only one Piezo element, is being investigated. The design and testing of this novel harvester is described.


2020 ◽  
Vol 16 (4) ◽  
pp. 41-48
Author(s):  
O.D. Naumenko

In this article the author carried out sedimentary and genetic modeling of facies parameters within heterogeneous geological bodies based on the analysis of geological and geophysical materials in the Southern Ukrainian oil and gas region. Special attention was paid to clastic facies and parameters demonstrating the degree of heterogeneity and a wide range of facial settings of the sedimentation basin. The data from lithological, geochemical, and geophysical field studies of wells was interpreted to predict hydrocarbon traps. This resulted in the facial diagnostic of the groups of geological bodies of clastic rocks coexisting with sediments of both tectonic and ridge morphological structure of the study area. Such diagnostics allowed us to build a prognostic lithologicfacial (sedimentation) section. Based on the modeling of the Vendian top (Vendian is a stratigraphic unit partially corresponding to Ediacaran) and the Jurassic base, a schematic map of the Paleozoic sediments was constructed for the first time, which made it possible to identify zones of the potential distribution of the former reef structures. The article presents the spatial forecast of hydrocarbon reservoir distribution in geological bodies of oil and gas bearing complexes within the PreDobruja Trough. The data allow forecasting a large number of traps, mainly small ones, formed by clusters of cavernous dolomites, limestones, and mixed rocks confined to certain cyclical elements and, in particular, associated with diastems. Most of such traps are caused by metasomatic dolomitization and paleokarst.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Amrit P. Sharma ◽  
Makhes K. Behera ◽  
Dhiren K. Pradhan ◽  
Sangram K. Pradhan ◽  
Carl E. Bonner ◽  
...  

AbstractOne of the ways to mitigate the world energy crisis is to harvest clean and green energy from waste-heat, which is abundant, ubiquitous, and free. Energy harvesting of this waste-heat is one of the most encouraging methods to capture freely accessible electrical energy. Ferroelectric materials can be used to harvest energy for low power electronic devices, as they exhibit switchable polarization, excellent piezoelectric and pyroelectric properties. The most important characteristic of ferroelectric materials, in the context of energy harvesting, is their ability to generate electric power from a time-dependent temperature change. In this work, we grew highly c-axis oriented heterostructures of BaZr0.2Ti0.8O3 (barium zirconium titanate, BZT)/Ba0.7Ca0.3TiO3 (barium calcium titanate, BCT) on SrRuO3 (strontium ruthenate, SRO) and deposited on SrTiO3 (strontium titanate, STO) single crystalline substrate using pulsed laser deposition (PLD) technique. We investigated the structural, electrical, dielectric, and pyroelectric properties of the above-mentioned fabricated heterostructures. The wide range of θ–2θ X-ray diffraction (XRD) patterns only shows (00l) reflection peaks of heterostructures and the substrate which confirmed that the films are highly c-axis oriented. We are also capable to convert the low-grade waste-heat into electrical energy by measuring various temperature-dependent ferroelectric hysteresis loops of our nanostructure films via pyroelectric Ericsson cycles and the structures show an energy conversion density ~ 10,970 kJ/m3 per cycle. These devices exhibit a large pyroelectric current density of ~ 25 mA/m2 with 11.8 °C of temperature fluctuation and the corresponding pyroelectric coefficient of 3425 μC/m2K. Our research findings suggest that these lead-free relaxor-ferroelectric heterostructures might be the potential candidates to harvest electrical energy from waste low-grade thermal energy.


2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
David N. Betts ◽  
H. Alicia Kim ◽  
Christopher R. Bowen

Energy harvesting devices based on a piezoelectric material attached to asymmetric bistable laminate plates have been shown to exhibit high levels of power extraction over a wide range of frequencies. This paper optimizes for the design of bistable composites combined with piezoelectrics for energy harvesting applications. The electrical energy generated during state-change, or “snap-through,” is maximized through variation in ply thicknesses and rectangular laminate edge lengths. The design is constrained by a bistability constraint and limits on both the magnitude of deflection and the force required for the reversible actuation. Optimum solutions are obtained for differing numbers of plies and the numerical investigation results are discussed.


2019 ◽  
Vol 113 ◽  
pp. 03010 ◽  
Author(s):  
Alessandra Cuneo ◽  
Stefano Barberis ◽  
Alberto Traverso ◽  
Paolo Silvestri

There are several small energy sources that can be exploited to provide useful energy: small temperature differences, mechanical vibrations, flow variations, latent exhausts are just some examples. The recovery of such common and small energy sources, usually wasted, for example with the conversion into useful amounts of electrical energy, is called energy harvesting. Energy harvesting allows low-power embedded devices to be powered from naturally-occurring or unwanted environmental energy (e.g. pressure or temperature difference). The main aim in the last years of researches in such field, was the increasing of the efficiency of such components, with a higher power output and a smaller size. At present, a wide range of systems incorporating energy harvesters are now available commercially, all of them specific to certain types of energy source. Energy harvesting from dissipation processes such as fluid lamination is a challenge for many different applications. In addition, control valves to dissipate overpressures are common usage of many plants and systems. This paper surveys the market opportunities of such harvesting systems, considering the trade-offs affecting their efficiency, their applicability, and ease of deployment. Particular attention will be devoted to small energy harvesters than can exploit small expansions, such as from lamination valves or to systems that can feed mini sensors from small pressure drops, promising compactness, efficiency and cost effectiveness.


2019 ◽  
Vol 28 (08) ◽  
pp. 1950130
Author(s):  
R. Senthilkumar ◽  
G. M. Tamilselvan

Converting the harnessed energy from the environment or other energy sources to electrical energy is referred to as energy harvesting. The need of energy harvesting in wireless sensor networks is an essential issue to be handled to allow adequacy of the innovation in a wide range of utilizations. The maximum energy should be harvested from the solar panels and it should be stored and managed effectively to power the nodes in the wireless network. For this purpose, a solution proposed in this paper utilizes a hybrid accumulator architecture that combines the advantages of an effectively controlled “battery and ultra-capacitor (UC)” where the power stream from a lithium ion (Li-ion) battery is combined with a UC for power upgrade and conveyance to the stack proficiently and using a new adaptive power organizing algorithm, management of power in the battery and capacitor can be performed. The proposed design is implemented in Simulink and the results show the effect of the hybrid design.


2016 ◽  
Vol 3 (4) ◽  
Author(s):  
Romain Monthéard ◽  
Marise Bafleur ◽  
Vincent Boitier ◽  
Xavier Dollat ◽  
Nicolas Nolhier ◽  
...  

AbstractThis paper reports for the first time the experimental demonstration of a wireless sensor node only powered by an aeroacoustic energy-harvesting device, meant to be installed on an aircraft outside skin. Aeroacoustic noise is generated on purpose to serve as a means of converting mechanical energy from high velocity airflow into electrical energy. Results related to the physical characterization of the energy conversion process are presented. The proposed aeroacoustic transducer prototype, consisting in a rectangular cavity fitted with a piezoelectric membrane, is shown to deliver up to 2 mW AC power under Mach 0.5 airflow. Optimized power management electronics has been designed to interface with the transducer, including a self-powered Synchronized Switch Harvesting on Inductor (SSHI) interface circuit and an efficient buck-boost DC/DC converter. The design of micropower auxiliary circuits adds functionality while preserving high efficiency. This circuit stores energy in supercapacitors and is able to deliver a net output DC power close to 1 mW. A fully autonomous system has been implemented and tested, successfully demonstrating aeroacoustic power generation by supplying a battery-free wireless datalogger in conditions representative of an actual flight.


2020 ◽  
pp. 63-72
Author(s):  
Yu. Olefir ◽  
E. Sakanyan ◽  
I. Osipova ◽  
V. Dobrynin ◽  
M. Smirnova ◽  
...  

The entry of a wide range of biotechnological products into the pharmaceutical market calls for rein-forcement of the quality, efficacy and safety standards at the state level. The following general monographs have been elaborated for the first time to be included into the State Pharmacopoeia of the Russian Federation, XIV edition: "Viral safety" and "Reduction of the risk of transmitting animal spongiform encephalopathy via medicinal products". These general monographs were elaborated taking into account the requirements of foreign pharmacopoeias and the WHO recommendations. The present paper summarises the key aspects of the monographs.


Sign in / Sign up

Export Citation Format

Share Document