scholarly journals Investigation of the effects of pretreatment on the elemental composition of ash derived from selected Nigerian lignocellulosic biomass

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Adeolu A. Awoyale ◽  
David Lokhat ◽  
Patrick Okete

AbstractLignocellulosic biomass is an important source of renewable energy and a potential replacement for fossil fuels. In this work, the X-ray fluorescence (XRF) method was used to analyze the elemental composition of raw and pretreated lignocellulosic biomass of cassava peels, corn cobs, rice husks, sugarcane bagasse, yam peels, and mixtures of cassava peels and yam peels, corn cobs and rice husks and all five biomass samples combined. The influence of particle size on elemental properties was investigated by screening the selected biomass into two size fractions, of an average of 300 and 435 µm, respectively. The total concentration of Mg, Al, Si, P, S, Cl, Ca, Ti, Cr, Mn, Fe, Co, Cu, Zn, Sn, Ni, Br, Mo, Ba, Hg, and Pb were determined for each of the biomass samples before and after the different pretreatments adopted in this study. From the results of the analysis, there was a significant reduction in the concentration of calcium in all the analyzed biomass after the alkaline pretreatment with rice husks biomass having the lowest concentration of 66 ppm after the alkaline pretreatment. The sulfur content of the acid pretreated biomass increased considerably which is likely due to the sulfuric acid used for the acid pretreatment. The fact that a mixture of biomass feedstock affects the properties of the biomass after pretreatment was validated in the mixed biomass of cassava peels and yam peels biomass as an example. The concentration of Mg in the mixed biomass was 1441 ppm but was 200 ppm and 353 ppm in individual cassava peels and yam peels respectively. The results of this study demonstrated that pretreated mixtures of biomass have varied elemental compositions, which could be an important factor affecting downstream processes, especially if a hybrid feedstock is used in a large-scale application.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Adeolu A. Awoyale ◽  
David Lokhat

AbstractIn the present study, five lignocellulosic biomass namely, corn cobs (Zea mays), rice husks (Oryza sativa), cassava peels (Manihot esculenta), sugar cane bagasse (Saccharum officinarum), and white yam peels (Dioscorea rotundata) of two mesh sizes of 300 and 425 microns and a combination of some and all of the biomass were pretreated using combined hydrothermal and acid-based, combined hydrothermal and alkali-based and hydrothermal only processes. The raw and pretreated biomass were also characterized by Fourier transform infrared spectroscopy (FT-IR), Brunauer–Emmett–Teller (BET), X-Ray diffraction (XRD), and Scanning electron microscopy (SEM) to determine the effects of the various pretreatments on the biomass being studied. The cellulose values of the raw biomass range from 25.8 wt% for cassava peels biomass to 40.0 wt% for sugar cane bagasse. The values of the cellulose content increased slightly with the pretreatment, ranging from 33.2 to 43.8 wt%. The results of the analysis indicate that the hydrothermal and alkaline-based pretreatment shows more severity on the different biomass being studied as seen from the pore characteristics results of corn cobs + rice husks biomass, which also shows that the combination of feedstocks can effectively improve the properties of the biomass in the bioethanol production process. The FTIR analysis also showed that the crystalline cellulose present in all the biomass was converted to the amorphous form after the pretreatment processes. The pore characteristics for mixed corn cobs and rice husks biomass have the highest specific surface area and pore volume of 1837 m2/g and 0.5570 cc/g respectively.


Molecules ◽  
2020 ◽  
Vol 25 (5) ◽  
pp. 1070 ◽  
Author(s):  
Amparo Jiménez-Quero ◽  
Eric Pollet ◽  
Luc Avérous ◽  
Vincent Phalip

The bioproduction of high-value chemicals such as itaconic and fumaric acids (IA and FA, respectively) from renewable resources via solid-state fermentation (SSF) represents an alternative to the current bioprocesses of submerged fermentation using refined sugars. Both acids are excellent platform chemicals with a wide range of applications in different market, such as plastics, coating, or cosmetics. The use of lignocellulosic biomass instead of food resources (starch or grains) in the frame of a sustainable development for IA and FA bioproduction is of prime importance. Filamentous fungi, especially belonging to the Aspergillus genus, have shown a great capacity to produce these organic dicarboxylic acids. This study attempts to develop and optimize the SSF conditions with lignocellulosic biomasses using A. terreus and A. oryzae to produce IA and FA. First, a kinetic study of SSF was performed with non-food resources (wheat bran and corn cobs) and a panel of pH and moisture conditions was studied during fermentation. Next, a new process using an enzymatic cocktail simultaneously with SSF was investigated in order to facilitate the use of the biomass as microbial substrate. Finally, a large-scale fermentation process was developed for SSF using corn cobs with A. oryzae; this specific condition showed the best yield in acid production. The yields achieved were 0.05 mg of IA and 0.16 mg of FA per gram of biomass after 48 h. These values currently represent the highest reported productions for SSF from raw lignocellulosic biomass.


2016 ◽  
Vol 832 ◽  
pp. 55-62
Author(s):  
Ján Gaduš ◽  
Tomáš Giertl ◽  
Viera Kažimírová

In the paper experiments and theory of biogas production using industrial waste from paper production as a co-substrate are described. The main aim of the experiments was to evaluate the sensitivity and applicability of the biochemical conversion using the anaerobic digestion of the mixed biomass in the pilot fermentor (5 m3), where the mesophillic temperature was maintained. It was in parallel operation with a large scale fermentor (100 m3). The research was carried out at the biogas plant in Kolíňany, which is a demonstration facility of the Slovak University of Agriculture in Nitra. The experiments proved that the waste arising from the paper production can be used in case of its appropriate dosing as an input substrate for biogas production, and thus it can improve the economic balance of the biogas plant.


1992 ◽  
Vol 42 (3) ◽  
pp. 197-204 ◽  
Author(s):  
M. Ropars ◽  
R. Marchal ◽  
J. Pourquié ◽  
J.P. Vandecasteele

2019 ◽  
Vol 21 (2) ◽  
pp. 43-51
Author(s):  
Jiří Horák ◽  
Lenka Kuboňová ◽  
Milan Dej ◽  
Vendula Laciok ◽  
Šárka Tomšejová ◽  
...  

Abstract Ashes were prepared by annealing selected types of solid fuels (biomass: corn cobs, sunflower husks, olive pomace, hay pellets and rice husks; coal: lignite and bituminous; and alternative fuel: paper sludge) at different temperatures (550°C, 815°C and 975°C). Based on X-ray fluorescence spectra, the slagging/fouling indexes were used to study the effects of the type of ash and the ashing temperature on the ash fouling and slagging properties. Slagging indexes were compared with the ash fusion temperatures. Ash fusion temperatures were measured by a LECO AF-700. The lowest deformation temperature (below 1000°C) was seen for the ashes prepared from hay pellets and corn cobs. On the other hand, the deformation temperature exceeded 1500°C for ashes prepared from paper sludge, sunflower husks and rice husks. By calculating the different slagging/fouling indexes, all the ashes exhibited slagging/fouling problems of varying degrees.


2019 ◽  
Vol 2019 ◽  
pp. 1-8 ◽  
Author(s):  
Qian Fang ◽  
Sinmin Ji ◽  
Dingwu Huang ◽  
Zhouyue Huang ◽  
Zilong Huang ◽  
...  

This study explores the use of alkaline pretreatments to improve the hydrolyzation of rice husks to produce volatile fatty acids (VFAs). The study investigated the effects of reagent concentration and pretreatment time on protein, carbohydrates, and dissolved chemical oxygen demand (SCOD) dissolution after the pretreatment. The optimum alkaline pretreatment conditions were 0.30 g NaOH (g VS)−1, with a reaction time of 48 h. The experimental results show that when comparing the total VFA (TVFA) yields from the alkaline-pretreated risk husk with those from the untreated rice husk, over 14 d and 2 d, the maximum value reached 1237.7 and 716.0 mg·L−1 with acetic acid and propionic acid and with acetic acid and butyric acid, respectively. After the alkaline pretreatment, TVFAs increased by 72.9%; VFA accumulation grew over time. The study found that alkaline pretreatment can improve VFA yields from rice husks and transform butyric acid fermentation into propionic acid fermentation. The study results can provide guidelines to support the comprehensive utilization of rice husk and waste treatment.


Materials ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 1524 ◽  
Author(s):  
Jing Liu ◽  
Chunyan Xie ◽  
Chao Fu ◽  
Xiuli Wei ◽  
Dake Wu

When properly processed, rice husk ash (RHA) comprises a large amount of SiO2, which exhibits a high pozzolanic activity and acts as a good building filler. In this paper, the effects of rice husk ash content, acid pretreatment, and production regions on the compressive and flexural properties and water absorption of a cement paste were studied. The experimental results showed that the compressive strength of the rice husk ash was the highest with a 10% content level, which was about 16.22% higher than that of the control sample. The rice husk after acid pretreatment displayed a higher strength than that of the sample without the acid treatment, and the rice husk from the Inner Mongolia region indicated a higher strength than that from the Guangdong province. However, the flexural strength of each group was not significantly different from that of the blank control group. The trend observed for the water absorption was similar to that of the compressive strength. The variation in the RHA proportions had the greatest influence on the properties of the paste specimens, followed by the acid pretreatments of the rice husks. The production regions of the rice husks indicated the least influence.


Sign in / Sign up

Export Citation Format

Share Document