scholarly journals A global meta-analysis of yield and water productivity responses of vegetables to deficit irrigation

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Manpreet Singh ◽  
Paramveer Singh ◽  
Sukhbir Singh ◽  
Rupinder Kaur Saini ◽  
Sangamesh V. Angadi

AbstractStrategies promoting efficient water use and conserving irrigation water are needed to attain water security to meet growing food demands. This meta-analysis study evaluated the effect of deficit irrigation (DI) strategy on eight vegetables to provide a quantitative estimate of yield and water productivity (WP) responses under variable soil textures, climates, and production systems (open-field and greenhouse). This study analyzed 425 yield and 388 WP comparisons of different DI levels to full irrigation (FI), extracted from 185 published studies representing 30 countries. Moving from the highest (> 80%FI) to the lowest (< 35%FI) irrigation level, the overall yield decline was 6.9 to 51.1% compared to FI, respectively. The WP gains ranged from 8.1 to 30.1%, with 35–50%FI recording the highest benefits. Soil texture affected the yield significantly only under the least irrigation class (< 35%FI), wherein sandy clay and loam recorded the highest (82.1%) and the lowest (26.9%) yield decline, respectively. Among the climates, temperate climate was overall the most advantageous with the least yield penalty (21.9%) and the highest WP gain (21.78%) across various DI levels. The DI application under the greenhouse caused lesser yield reduction compared to the open-field. The WP gains due to DI were also higher for greenhouse (18.4%) than open-field (13.6%). Consideration of yield penalties and the cost of saved irrigation water is crucial while devising the reduced irrigation amounts to the crops. The yield reductions under low to moderate water deficits (> 65%FI) accompanied by gains in WP may be justifiable in the light of anticipated water restriction.

Agronomy ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 796
Author(s):  
Mohamed A. Mattar ◽  
Said S. Soliman ◽  
Rashid S. Al-Obeed

A field experiment was conducted on date palm trees (Phoenix dactylifera ‘Succary’) cultivated on sandy loam soil from 2017 to 2018. This study investigated the effects of providing water of three different qualities, namely freshwater (FR) and two saline water sources: reclaimed wastewater (RW) and well-water (WE) applied through three irrigation levels representing 50% (I50), 100% (I100), and 150% (I150) of crop evapotranspiration (ETc), on the soil water and salt distribution patterns, yield, water productivity (WP), and fruit quality of the ′Succary′ date palm. The electrical conductivity (ECw) of FR, RW, and WE were 0.18, 2.06, and 3.94 dS m−1, respectively. Results showed that WE applied by the I150 treatment had the highest soil water content, followed by RW used in the I100 irrigation level and FR with I50, whereas the soil salt content was high for WE applied in the I50 level and low for FR applied by the I150 treatment. Deficit irrigation (I50) of date palms with either RW or WE reduced date yields on average 86 kg per tree, whereas the yield increased under over-irrigation (I150) with FR to 123.25 kg per tree. High WP values were observed in the I50 treatments with FR, RW, or WE (on average 1.82, 1.68, and 1.67 kg m−3, respectively), whereas the I150 treatment with each of the three water types showed the lowest WP values. Fruit weight and size were the lowest in the full irrigation (I100) with WE, whereas the I150 treatment with RW showed the highest values. There were no significant differences in either total soluble solids (TSS) or acidity values when the irrigation level decreased from 100% to 50% ETc. Compared with both I50 and I100 treatments, reduced values of both TSS and acidity were observed in the I150 treatment when ECw decreased from 3.94 to 0.18 dS m−1,. Fruit moisture content decreased with the application of saline irrigation water (i.e., RW or WE). Total sugar and non-reducing sugar contents in fruits were found to be decreased in the combination of RW and I150, whereas the 50% ETc irrigation level caused an increment in both parameters. These results suggest that the application of deficit irrigation to date palm trees grown in arid regions, either with FR or without it, can sufficiently maximize WP and improve the quality of fruits but negatively affects yield, especially when saline water is applied. The use of saline water for irrigation may negatively affect plants because of salt accumulation in the soil in the long run.


Agronomy ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1291
Author(s):  
Nasr M. Abdou ◽  
Mohamed A. Abdel-Razek ◽  
Shimaa A. Abd El-Mageed ◽  
Wael M. Semida ◽  
Ahmed A. A. Leilah ◽  
...  

Sustainability of rice production under flooding conditions has been challenged by water shortage and food demand. Applying higher nitrogen fertilization could be a practical solution to alleviate the deleterious effects of water stress on lowland rice (Oryza sativa L.) in semi-arid conditions. For this purpose, field experiments were conducted during the summer of 2017 and 2018 seasons. These trials were conducted as split-split based on randomized complete blocks design with soil moisture regimes at three levels (120, 100 and 80% of crop evapotranspiration (ETc), nitrogen fertilizers at two levels (N1—165 and N2—200 kg N ha−1) and three lowland Egyptian rice varieties [V1 (Giza178), V2 (Giza177) and V3 (Sakha104)] using three replications. For all varieties, growth (plant height, tillers No, effective tillers no), water status ((relative water content RWC, and membrane stability index, MSI), physiological responses (chlorophyll fluorescence, Relative chlorophyll content (SPAD), and yield were significantly increased with higher addition of nitrogen fertilizer under all water regimes. Variety V1 produced the highest grain yield compared to other varieties and the increases were 38% and 15% compared with V2 and V3, respectively. Increasing nitrogen up to 200 kg N ha−1 (N2) resulted in an increase in grain and straw yields by 12.7 and 18.2%, respectively, compared with N1. The highest irrigation water productivity (IWP) was recorded under I2 (0.89 kg m−3) compared to (0.83 kg m−3) and (0.82 kg m−3) for I1 and I3, respectively. Therefore, the new applied agro-management practice (deficit irrigation and higher nitrogen fertilizer) effectively saved irrigation water input by 50–60% when compared with the traditional cultivation method (flooding system). Hence, the new proposed innovative method for rice cultivation could be a promising strategy for enhancing the sustainability of rice production under water shortage conditions.


Agriculture ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 448
Author(s):  
Leontina Lipan ◽  
Aarón A. Carbonell-Pedro ◽  
Belén Cárceles Rodríguez ◽  
Víctor Hugo Durán-Zuazo ◽  
Dionisio Franco Tarifa ◽  
...  

Mango is one of the most cultivated tropical fruits worldwide and one of few drought-tolerant plants. Thus, in this study the effect of a sustained deficit irrigation (SDI) strategy on mango yield and quality was assessed with the aim of reducing irrigation water in mango crop. A randomized block design with four treatments was developed: (i) full irrigation (FI), assuring the crop’s water needs, and three levels of SDI receiving 75%, 50%, and 33% of irrigation water (SDI75, SDI50, and SDI33). Yield, morphology, color, titratable acidity (TA), total soluble solids (TSS), organic acids (OA), sugars, minerals, fiber, antioxidant activity (AA), and total phenolic content (TPC) were analyzed. The yield was reduced in SDI conditions (8%, 11%, and 20% for SDI75, SDI50, and SDI33, respectively), but the irrigation water productivity was higher in all SDI regimes. SDI significantly reduced the mango size, with SDI33 generating the smallest mangoes. Peel color significantly changed after 13 days of ripening, with SDI75 being the least ripe. The TA, AA, and citric acid were higher in SDI75, while the TPC and fiber increased in all SDI levels. Consequently, SDI reduced the mango size but increased the functionality of samples, without a severe detrimental effect on the yield.


2021 ◽  
Author(s):  
Nigusie Abebe Sori ◽  
Kebede Nanesa Tufa ◽  
Jemal Mohammed Hassen ◽  
Wondimu Tolcha Adugna ◽  
Fikadu Robi Borana

Abstract Background: Deficit irrigation is one of the techniques used to enhance water productivity without significant yield loss in semiarid areas. Methods: A field experiment was conducted at Werer, Middle Awash Valley during the dry season of 2017/18, 2018/19 and, 2019/20 for three consecutive years to investigate the effects of deficit irrigation levels and furrow irrigation methods on onion yield and water productivity. Split plot design with three replications, in which the irrigation methods (Conventional, Fixed and Alternate Furrow) were assigned to the main plot and the three deficit levels (100% ETc, 75% ETc and 50% ETc), were in the sub-plot. Results: Results indicate that marketable onion bulb yield and water productivity were highly affected by the interaction effect of furrow irrigation methods and irrigation levels (p < 0.05). The highest bulb yield (17580.43 kg ha-) and water productivity (11.79 kg/m3) were obtained from conventional furrow irrigation method with100% ETc and alternate furrow irrigation with 50% ETc respectively. Considering water saved and maximum yield, Onion irrigated by AFI 100% ETC resulted in a 15% yield reduction with up to 50% irrigation water saving as compared to CFI 100% ETc. Conclusion: The present study suggests that, under water limiting conditions, adopting alternate furrow irrigation with 100% ETc can be an alternative to increase water productivity without significant yield reduction.


Water ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 571
Author(s):  
Mohamed Galal Eltarabily ◽  
John M. Burke ◽  
Khaled M. Bali

Yield and production functions of sunflower (Helianthus annuus) were evaluated under full and deficit irrigation practices with the presence of shallow saline groundwater in a semi-arid region in the Imperial Valley of southern California, USA. A growing degree day (GDD) model was utilized to estimate the various growth stages and schedule irrigation events throughout the growing season. The crop was germinated and established using overhead irrigation prior to the use of a subsurface drip irrigation (SDI) system for the remainder of the growing season. Four irrigation treatments were implemented: full irrigation (100% full sunflower crop evapotranspiration, ETC), two reduced irrigation scenarios (95% ETC and 80% ETC), and a deficit irrigation scenario (65% ETC). The salinity of the irrigation water (EC) (Colorado River water) was nearly constant at 1.13 dS·m−1 during the growing season. The depth to groundwater and groundwater salinity (ECGW) were continuously monitored in five 3 m deep observation wells. Depth to groundwater fluctuated slightly under the full and reduced irrigation treatments, but drastically increased under deficit irrigation, particularly toward the end of the growing season. Estimates of ECGW ranged from 7.34 to 12.62 dS·m−1. The distribution of soil electrical conductivity (ECS) and soil matric potential were monitored within the active root zone (120 cm) at selected locations in each of the four treatments. By the end of the experiment, soil salinity (ECS) across soil depths ranged from 1.80 to 6.18 dS·m−1. The estimated groundwater contribution to crop evapotranspiration was 9.03 cm or approximately 16.3% of the ETC of the fully irrigated crop. The relative yields were 91.8%, 82.4%, and 83.5% for the reduced (95% and 80% ETC) and deficit (65% ETC) treatments, respectively, while the production function using applied irrigation water (IW) was: yield = 0.0188 × (IW)2 − 15.504 × IW + 4856.8. Yield reduction in response to water stress was attributed to a significant reduction in both seed weight and the number of seed produced resulting in overall average yields of 2048.9, 1879.9, 1688.1, and 1710.3 kg·ha−1 for the full, both reduced, and deficit treatments, respectively. The yield response factor, ky, was 0.63 with R2 = 0.745 and the irrigation water use efficiencies (IWUE) were 3.70, 3.57, 3.81, and 4.75 kg·ha−1·mm−1 for the full, reduced, and deficit treatments, respectively. Our results indicate that sunflowers can sustain the implemented 35% deficit irrigation with root water uptake from shallow groundwater in arid regions with a less than 20% reduction in yield.


2020 ◽  
Vol 63 (6) ◽  
pp. 1813-1825
Author(s):  
Thomas J. Trout ◽  
Terry A. Howell ◽  
Marshall J. English ◽  
Derrel L. Martin

HighlightsDeficit irrigation may maximize net income when irrigation water supplies are limited or expensive.Water production functions are used with economic parameters to maximize net income with deficit irrigation.Net income may be insensitive to the amount of deficit irrigation if production costs are appropriate for anticipated yield.Deficit irrigation increases risk.Abstract. Competition for, regulation of, and depletion of water supplies in the western U.S. has resulted in reduced water available for irrigating crops. When the water supply is expensive or inadequate to meet full crop water requirements, deficit irrigation (DI) may maximize net income (NI) by reducing use of expensive water or irrigating more land with limited irrigation supplies. Managed DI entails rational planning and strategic water allocation to maximize NI when water supplies are constrained. Biophysical and economic relationships were used to develop NI models for DI and determine water allocation strategies that maximize NI under three types of water supply constraints. The analyses determined that potential benefits of DI are greatest when water is expensive, irrigation efficiency is low, the water supply is flexible, and rainfed production is not economically viable. When production costs are appropriate for anticipated yields, NI is less sensitive to DI planning decisions. Deficit irrigation will become more important as irrigation water supplies continue to decline in the future. Net income analysis can assist growers in making rational DI decisions. Keywords: Deficit irrigation, Economic analysis, Irrigation management, Net income, Optimization, Water productivity.


HortScience ◽  
2014 ◽  
Vol 49 (10) ◽  
pp. 1284-1291 ◽  
Author(s):  
Chiara Cirillo ◽  
Youssef Rouphael ◽  
Rosanna Caputo ◽  
Giampaolo Raimondi ◽  
Stefania De Pascale

Bougainvillea is widely used as flowering shrub in gardening and landscaping in the Mediterranean region characterized by limited water supply. The evaluation of deficit irrigation as a possible technique to improve water productivity and selection of genotypes that can better withstand soil water deficits are essential for sustainable production. A greenhouse experiment was conducted to determine the effects of deficit irrigation on three potted Bougainvillea genotypes [B. glabra var. Sanderiana, B. ×buttiana ‘Rosenka’, B. ‘Lindleyana’ (=B. ‘Aurantiaca’)] grown in two shapes, globe and pyramid, on agronomical and physiological parameters. Irrigation treatments were based on the daily water use (100%, 50%, or 25%). The shoot, total dry biomass, leaf number, leaf area, and macronutrient [nitrogen (N), phosphorus (P), and potassium (K)] concentration decreased in response to an increase in water stress with the lowest values recorded in the severe deficit irrigation (SDI) treatment. At 160 days after transplanting (DAT), the percentage of total dry biomass reduction caused by irrigation level was lower in B. ×buttiana ‘Rosenka’ compared with B. glabra var. Sanderiana and B. ‘Lindleyana’ (=B. ‘Aurantiaca’). At 160 DAT, the flower index increased in response to an increase in water stress with the highest values recorded under both moderate deficit irrigation (MDI) and SDI for B. ×buttiana ‘Rosenka’. The biomass water use efficiency (WUE) increased under water stress conditions with the highest values recorded in B. glabra var. Sanderiana and B. ×buttiana ‘Rosenka’ grown under MDI (average 1.43 and 1.25 g·L−1, respectively) and especially with SDI (average 1.68 and 1.36 g·L−1, respectively). A number of tolerance mechanisms such as increase in stomatal resistance, decrease in leaf water potential, and decrease in leaf osmotic potential have been observed, especially under SDI. The MDI treatment can be used successfully in Bougainvillea to reduce water consumption while improving the overall quality and WUE, whereas the genotypes B. glabra var. Sanderiana and B. ×buttiana ‘Rosenka’ could be considered suitable for pot plant production.


Agronomy ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 420 ◽  
Author(s):  
Mohamed Ashour ◽  
Ahmed A. El-Shafei ◽  
Hanan M. Khairy ◽  
Doaa Y. Abd-Elkader ◽  
Mohamed A. Mattar ◽  
...  

We performed field experiments to evaluate the influence of two extraction treatments, seaweed (Pterocladia capillacea S.G. Gmelin) water extraction (WE) and ultrasound-assisted water extraction (USWE) at three concentrations (5%, 10%, and 15%), as well as control NPK traditional mineral fertilizer on the growth, yield, minerals, and antioxidants of Jew’s Mallow (Corchorus olitorius L.) during the two seasons of 2016 and 2017 in Egypt. Plant height, number of leaves, and fresh weight of WE10 treatment were the highest (p < 0.05) as 59.67 cm, 10.67 and 2.41 kg m−2 in 2016, respectively, and 57.33 cm, 11.00 and 2.32 kg m−2 in 2017, respectively. WE10 and USWE5 treatments produced the highest dry matter (17.07%) in 2016 and (16.97%) in 2017, respectively. WE10 plants had an increased water productivity of 41.2% relative to control plants in both seasons. The highest chlorophyll ‘a’ was recorded after the WE10 treatment in 2016 and 2017 (17.79 μg g−1 and 17.84 μg g−1, respectively). The highest levels of total antioxidant capacity, total phenolics, and total flavonoids were also recorded after the WE10 treatment. Application of WE10 boosted growth, yield, minerals, and antioxidants of Jew’s Mallow. The CROPWAT model was used to estimate the evapotranspiration, irrigation water requirements, and yield response to irrigation scheduling. Our data showed a yield reduction in the initial growth stage if a limited amount of water was provided. Therefore, irrigation water should be provided during the most important stages of crop development with the choice of effective irrigation practices to avoid water losses, as this helps to maximize yield.


Sign in / Sign up

Export Citation Format

Share Document