scholarly journals Nanoengineering of eco-friendly silver nanoparticles using five different plant extracts and development of cost-effective phenol nanosensor

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Siwar Jebril ◽  
Alaeddine Fdhila ◽  
Chérif Dridi

AbstractThe production of environmentally friendly silver nanoparticles (AgNPs) has aroused the interest of the scientific community due to their wide applications mainly in the field of environmental pollution detection and water quality monitoring. Here, for the first time, five plant leaf extracts were used for the synthesis of AgNPs such as Basil, Geranium, Eucalyptus, Melia, and Ruta by a simple and eco-friendly method. Stable AgNPs were obtained by adding a silver nitrate (AgNO3) solution with the leaves extract as reducers, stabilizers and cappers. Only, within ten minutes of reaction, the yellow mixture changed to brown due to the reduction of Ag+ ions to Ag atoms. The optical, structural, and morphology characteristics of synthesized AgNPs were determined using a full technique like UV–visible spectroscopy, FTIR spectrum, XRD, EDX spectroscopy, and the SEM. Thus, Melia azedarach was found to exhibit smaller nanoparticles (AgNPs-M), which would be interesting for electrochemical application. So, a highly sensitive electrochemical sensor based on AgNPs-M modified GCE for phenol determination in water samples was developed, indicating that the AgNPs-M displayed good electrocatalytic activity. The developed sensor showed good sensing performances: a high sensitivity, a low LOD of 0.42 µM and good stability with a lifetime of about one month, as well as a good selectivity towards BPA and CC (with a deviation less than 10%) especially for nanoplastics analysis in the water contained in plastics bottles. The obtained results are repeatable and reproducible with RSDs of 5.49% and 3.18% respectively. Besides, our developed sensor was successfully applied for the determination of phenol in tap and mineral water samples. The proposed new approach is highly recommended to develop a simple, cost effective, ecofriendly, and highly sensitive sensor for the electrochemical detection of phenol which can further broaden the applications of green silver NPs.

2020 ◽  
Vol 36 (6) ◽  
pp. 1103-1106
Author(s):  
Darwin F. Reyes ◽  
Gil Fabien S. Cabrera ◽  
Shemma Mica V. Mata ◽  
azmin Pariz D. San Pedro ◽  
add Christian C. Palioc ◽  
...  

The synthesis of silver nanoparticles via plant-mediated approach is an emerging area of research interest worldwide. The procedure is cost-effective and does not require the use of toxic chemicals and complicated reaction conditions. In the present investigation, silver nanoparticles were prepared using the leaf extracts of Ixora coccinea Linn., a common ornamental shrub in the Philippines, as the reducing agent. The effect of pH on the synthesis was investigated, and results showed that the quality of the synthesized silver nanoparticles changes in varying pH of the reducing agent.


Nanomaterials ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 384 ◽  
Author(s):  
Zhiliang Zhang ◽  
Tiantian Si ◽  
Jun Liu ◽  
Guowei Zhou

The rapid sampling and efficient collection of target molecules from a real-world surface is fairly crucial for surface-enhanced Raman scattering (SERS) to detect trace pesticide residues in the environment and in agriculture fields. In this work, a versatile approach was exploited to fabricate a flexible SERS substrate for highly sensitive detection of carbaryl pesticides, using in-situ grown silver nanoparticles (AgNPs)on non-woven (NW) fabric surfaces based on mussel-inspired polydopamine (PDA) molecules. The obtained NW@PDA@AgNPs fabrics showed extremely sensitive and reproducible SERS signals toward crystal violet (CV) molecules, and the detection limit was as low as 1.0 × 10−12 M. More importantly, these NW@PDA@AgNPs fabrics could be directly utilized as flexible SERS substrates for the rapid extraction and detection of trace carbaryl pesticides from various fruit surfaces through a simple swabbing approach. It was identified that the detection limits of carbaryl residues from apple, orange, and banana surfaces were approximately decreased to 4.02 × 10−12, 6.04 × 10−12, and 5.03 × 10−12 g, respectively, demonstrating high sensitivity and superior reliability. These flexible substrates could not only drastically increase the collection efficiency from multifarious irregular-shaped matrices, but also greatly enhance analytical sensitivity and reliability for carbaryl pesticides. The fabricated flexible and multifunctional SERS substrates would have great potential to trace pesticide residue detection in the environment and bioscience fields.


Nanomaterials ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 380 ◽  
Author(s):  
Diana Rafael ◽  
Fernanda Andrade ◽  
Francesc Martinez-Trucharte ◽  
Jana Basas ◽  
Joaquín Seras-Franzoso ◽  
...  

Hydrogels (HG) have recognized benefits as drug delivery platforms for biomedical applications. Their high sensitivity to sterilization processes is however one of the greatest challenges regarding their clinical translation. Concerning infection diseases, prevention of post-operatory related infections is crucial to ensure appropriate patient recovery and good clinical outcomes. Silver nanoparticles (AgNPs) have shown good antimicrobial properties but sustained release at the right place is required. Thus, we produced and characterized thermo-sensitive HG based on Pluronic® F127 loaded with AgNPs (HG-AgNPs) and their integrity and functionality after sterilization by dry-heat and autoclave methods were carefully assessed. The quality attributes of HG-AgNPs were seriously affected by dry-heat methods but not by autoclaving methods, which allowed to ensure the required sterility. Also, direct sterilization of the final HG-AgNPs product proved more effective than of the raw material, allowing simpler production procedures in non-sterile conditions. The mechanical properties were assessed in post mortem rat models and the HG-AgNPs were tested for its antimicrobial properties in vitro using extremely drug-resistant (XDR) clinical strains. The produced HG-AgNPs prove to be versatile, easy produced and cost-effective products, with activity against XDR strains and an adequate gelation time and spreadability features and optimal for in situ biomedical applications.


RSC Advances ◽  
2016 ◽  
Vol 6 (81) ◽  
pp. 77854-77862 ◽  
Author(s):  
Zeinab F. Akl ◽  
Tamer Awad Ali

Potentiometric screen-printed electrodes were constructed for Th(iv) determination in water samples. The optimized electrodes exhibited fast response time, wide linear range, low detection limit and high selectivity towards Th(iv) ions.


NANO ◽  
2021 ◽  
Author(s):  
Saira Naz ◽  
Amjad Nisar ◽  
Lizhi Qian ◽  
Shafqat Hussain ◽  
Shafqat Karim ◽  
...  

The development of a highly sensitive and selective electrocatalyst for the detection of diclofenac sodium (D.S.) has remained a great challenge. In this work, graphene oxide functionalized with silver nanoparticles and zinc oxide (Ag–ZnO–GO) electrocatalyst was developed and investigated for the detection of D.S. The Ag–ZnO–GO/glassy carbon electrode exhibits high sensitivity and fast response within 3[Formula: see text]s owing to the efficient oxidation of D.S. at a very low potential at 0.25[Formula: see text]V. Moreover, the electrode shows a low detection limit of 0.02[Formula: see text][Formula: see text]M ([Formula: see text]) and long-term stability. To explore the synergic effects, the measurements of D.S. using GO, ZnO and ZnO–GO modified electrodes were also performed. The results demonstrate that the Ag–ZnO–GO nanocomposite electrode exhibits enhanced sensitivity and selectivity compared to the other electrodes. In addition, the electrode reveals excellent results for D.S. detection in the real samples as well. The enhanced performance of the proposed electrode is attributed to the improved electron transfer ability and synergic effects of the plasmonic Ag NPs and ZnO–GO structure. It is expected that Ag–ZnO–GO composite is a promising candidate for the construction of cost-effective electrochemical biosensors for medical and industrial applications.


2021 ◽  
Author(s):  
Chérif DRIDI ◽  
Zina Fredj ◽  
Maroua Moslah

Electrochemical detectionof serotonin (5-hydroxytryptamine 5-HT) is proposed for the first time using a cost effective and eco-friendly nanocomposite of AgNPs and rGO which is synthesized through in situ green reduction...


2018 ◽  
Vol 108 (2) ◽  
pp. 292-298 ◽  
Author(s):  
Binghai Lou ◽  
Yaqin Song ◽  
Moytri RoyChowdhury ◽  
Chongling Deng ◽  
Ying Niu ◽  
...  

Huanglongbing (HLB) is one of the most destructive diseases in citrus production worldwide. Early detection of HLB pathogens can facilitate timely removal of infected citrus trees in the field. However, low titer and uneven distribution of HLB pathogens in host plants make reliable detection challenging. Therefore, the development of effective detection methods with high sensitivity is imperative. This study reports the development of a novel method, tandem repeat-based polymerase chain displacement reaction (TR-PCDR), for the detection of ‘Candidatus Liberibacter asiaticus’, a widely distributed HLB-associated bacterium. A uniquely designed primer set (TR2-PCDR-F/TR2-PCDR-1R) and a thermostable Taq DNA polymerase mutant with strand displacement activity were used for TR-PCDR amplification. Performed in a regular thermal cycler, TR-PCDR could produce more than two amplicons after each amplification cycle. Sensitivity of the developed TR-PCDR was 10 copies of target DNA fragment. The sensitive level was proven to be 100× higher than conventional PCR and similar to real-time PCR. Data from the detection of ‘Ca. L. asiaticus’ with filed samples using the above three methods also showed similar results. No false-positive TR-PCDR amplification was observed from healthy citrus samples and water controls. These results thereby illustrated that the developed TR-PCDR method can be applied to the reliable, highly sensitive, and cost-effective detection of ‘Ca. L. asiaticus’.


2017 ◽  
Author(s):  
Hossein Zare ◽  
Ghasem Najafpour ◽  
Mohsen Jahanshahi ◽  
Mostafa Rahimnejad ◽  
Mohsen Rezvani

A highly sensitive biosensor based on silver nanoparticles (AgNPs) was fabricated for glucose detection in aqueous phase. Firstly, a platinum (Pt) electrode was modified with the mixture of glucose oxidase and chitosan. AgNPs were electrodeposited into the modified electrode by single pulse potentiostatic method at –0.4 V. The electrochemical performance of the modified electrode was evaluated by cyclic voltammetry and amperometry. The fabricated biosensor had a high sensitivity of 58.6 μA mM−1 cm−2 and detection limit of 4.4 μM glucose at a signal to noise ratio of 3. In addition, the biosensor showed a short response time less than 5 s and a wide linear range of 0.05-11.5 mM. The apparent Michaelis–Menten constant (KM) was found to be 9.14 mM. In addition, thermal stability and anti-interference ability of the biosensor were investigated. The results demonstrated that AgNPs enhanced the analytical performance of the biosensor.


2013 ◽  
Vol 678 ◽  
pp. 301-305 ◽  
Author(s):  
Gunasekaran Bhavani ◽  
Paulsamy Muthuselvam ◽  
Subramanian Geetha

Silver nanoparticles are known to have antimicrobial activity. The green synthesis method of nanoparticle synthesis is one of the most cost effective and eco friendly method. The present study is based on the synthesis of silver nanoparticles by the self reduction of silver nitrate by the leaf extracts of Vitex negundo which is one of the novel methods used in developing nanoparticles. The characterization of the particle was done by UV-Vis spectrophotometer, Fourier Transform Infra Red Spectroscopy, X-ray Diffraction analysis and the size of the synthesized nanoparticle was analyzed in the Scanning Electron Microscopy. The size of the particle was found to be 56 nm. The obtained silver nanoparticles showed anti-microbial activity against E.coli and Klebsiella pneumonia.


RSC Advances ◽  
2017 ◽  
Vol 7 (32) ◽  
pp. 19863-19877 ◽  
Author(s):  
Aditya Dileep Kurdekar ◽  
L. A. Avinash Chunduri ◽  
Sai Manohar Chelli ◽  
Mohan Kumar Haleyurgirisetty ◽  
Eswarappa Pradeep Bulagonda ◽  
...  

Fluorescent silver nanoparticles have been employed in an immunoassay to detect HIV p24 antigen with high sensitivity in the linear range of 10–1000 pg mL−1.


Sign in / Sign up

Export Citation Format

Share Document