Graphene Oxide Functionalized with Silver Nanoparticles and ZnO Synergic Nanocomposite as an Efficient Electrochemical Sensor for Diclofenac Sodium

NANO ◽  
2021 ◽  
Author(s):  
Saira Naz ◽  
Amjad Nisar ◽  
Lizhi Qian ◽  
Shafqat Hussain ◽  
Shafqat Karim ◽  
...  

The development of a highly sensitive and selective electrocatalyst for the detection of diclofenac sodium (D.S.) has remained a great challenge. In this work, graphene oxide functionalized with silver nanoparticles and zinc oxide (Ag–ZnO–GO) electrocatalyst was developed and investigated for the detection of D.S. The Ag–ZnO–GO/glassy carbon electrode exhibits high sensitivity and fast response within 3[Formula: see text]s owing to the efficient oxidation of D.S. at a very low potential at 0.25[Formula: see text]V. Moreover, the electrode shows a low detection limit of 0.02[Formula: see text][Formula: see text]M ([Formula: see text]) and long-term stability. To explore the synergic effects, the measurements of D.S. using GO, ZnO and ZnO–GO modified electrodes were also performed. The results demonstrate that the Ag–ZnO–GO nanocomposite electrode exhibits enhanced sensitivity and selectivity compared to the other electrodes. In addition, the electrode reveals excellent results for D.S. detection in the real samples as well. The enhanced performance of the proposed electrode is attributed to the improved electron transfer ability and synergic effects of the plasmonic Ag NPs and ZnO–GO structure. It is expected that Ag–ZnO–GO composite is a promising candidate for the construction of cost-effective electrochemical biosensors for medical and industrial applications.

Author(s):  
Venkata Krishna Karthik Tangirala ◽  
Heberto Gomez-Pozos ◽  
Ventura Rodríguez-Lugo ◽  
María De La Luz Olvera

In this work, we report synthesis of Cu, Pt and Pd doped SnO2 powders and their comparative CO gas sensing studies. Dopants were incorporated into SnO2 nanostructures using chemical and impregnation methods by using urea and ammonia as precipitation agents. The synthesized samples were characterized using X-ray diffraction (XRD), Raman spectroscopy, Scanning electron microscopy (SEM) and High resolution transmission electron microscopy (HR-TEM). The presence of dopants within the SnO2 nanostructures was evidenced from HR-TEM. Doped powders utilizing chemical methods with urea as precipitation agent presented higher sensitivities compared to the remaining, which is due to the formation of uniform and homogeneous particles resulted from the temperature assisted synthesis. The particle sizes of doped SnO2 nanostructures were in the range of 40-100 nm. An enhanced sensitivity around 1783 was achieved with Cu doped SnO2 when compared with two other dopants i.e., Pt (1200) and Pd: SnO2(502). The high sensitivity of Cu: SnO2 is due to formation of CuO and its excellent association and dissociation in the presence of CO with adsorbed atmospheric oxygen at sensor operation temperatures resulted in high conductance. Cu: SnO2 may be an alternative and cost effective sensor for industrial applications.


2015 ◽  
Vol 10 (1) ◽  
pp. 13-20
Author(s):  
Elisabete Galeazzo ◽  
Marcos C. Moraes ◽  
Henrique E. M. Peres ◽  
Michel O. S. Dantas ◽  
Victor G. C. Lobo ◽  
...  

Intensive research has been focused on investigating new sensing materials, such as carbon nanotubes (CNT) because of their promising characteristics. However, there are challenges related to their application in commercial devices such as sensitivity, compatibility, and complexity of miniaturization, among others. We report the study of the electrical behavior of devices composed by multi-walled carbon nanotubes (MWCNT) deposited between aluminum electrodes on glass substrates by means of dielectrophoresis (DEP), which is a simple and cost-effective method. The devices were fabricated by varying the DEP process time. Remarkable changes in their electric resistance were noticed depending on the MWCNT quantities deposited. Other electrical properties of devices such as high sensitivity, fast response time and stability are also characterized in humid environment. A humidity sensing mechanism is proposed on the basis of charge transfer between adsorbed water molecules and the MWNTC surface or between water and the glass surface.


2021 ◽  
Vol 21 (8) ◽  
pp. 4400-4405
Author(s):  
Junyeop Lee ◽  
Nam Gon Do ◽  
Dong Hyuk Jeong ◽  
Sae-Wan Kim ◽  
Maeum Han ◽  
...  

Carbon monoxide (CO) is an odorless, colorless, tasteless, extremely flammable, and highly toxic gas. It is produced when there is insufficient oxygen supply during the combustion of carbon to produce carbon dioxide (CO2). CO is produced from operating engines, stoves, or furnaces. CO poisoning occurs when CO accumulates in the bloodstream and can result in severe tissue damage or even death. Many types of CO sensors have been reported, including electrochemical, semiconductor metal-oxide, catalytic combustion, thermal conductivity, and infrared absorption-type for the detection of CO. However, despite their excellent selectivity and sensitivity, issues such as complexity, power consumption, and calibration limit their applications. In this study, a fabricbased colorimetric CO sensor is proposed to address these issues. Potassium disulfitopalladate (II) (K2Pd(SO3)2) is dyed on a polyester fabric as a sensing material for selective CO detection. The sensing characteristics and performance are investigated using optical instruments such as RGB sensor and spectrometer. The sensor shows immediate color change when exposed to CO at a concentration that is even lower than 20 ppm before 2 min. The fast response time of the sensor is attributed to its high porosity to react with CO. This easy-to-fabricate and cost-effective sensor can detect and prevent the leakage of CO simultaneously with high sensitivity and selectivity toward CO.


Micromachines ◽  
2020 ◽  
Vol 11 (2) ◽  
pp. 148 ◽  
Author(s):  
Francisco J. Romero ◽  
Almudena Rivadeneyra ◽  
Markus Becherer ◽  
Diego P. Morales ◽  
Noel Rodríguez

In this paper, we present a simple, fast, and cost-effective method for the large-scale fabrication of high-sensitivity humidity sensors on flexible substrates. These sensors consist of a micro screen-printed capacitive structure upon which a sensitive layer is deposited. We studied two different structures and three different sensing materials by modifying the concentration of poly(3,4-ethylenedioxythiophene)/polystyrene sulfonate (PEDOT:PSS) in a graphene oxide (GO) solution. The results show that the aggregation of the PEDOT:PSS to the GO can modify its electrical properties, boosting the performance of the capacitive sensors in terms of both resistive losses and sensitivity to relative humidity (RH) changes. Thus, in an area less than 30 mm2, the GO/PEDOT:PSS-based sensors can achieve a sensitivity much higher (1.22 nF/%RH at 1 kHz) than other similar sensors presented in the literature which, together with their good thermal stability, time response, and performance over bending, demonstrates that the manufacturing approach described in this work paves the way for the mass production of flexible humidity sensors in an inexpensive way.


Nanomaterials ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 380 ◽  
Author(s):  
Diana Rafael ◽  
Fernanda Andrade ◽  
Francesc Martinez-Trucharte ◽  
Jana Basas ◽  
Joaquín Seras-Franzoso ◽  
...  

Hydrogels (HG) have recognized benefits as drug delivery platforms for biomedical applications. Their high sensitivity to sterilization processes is however one of the greatest challenges regarding their clinical translation. Concerning infection diseases, prevention of post-operatory related infections is crucial to ensure appropriate patient recovery and good clinical outcomes. Silver nanoparticles (AgNPs) have shown good antimicrobial properties but sustained release at the right place is required. Thus, we produced and characterized thermo-sensitive HG based on Pluronic® F127 loaded with AgNPs (HG-AgNPs) and their integrity and functionality after sterilization by dry-heat and autoclave methods were carefully assessed. The quality attributes of HG-AgNPs were seriously affected by dry-heat methods but not by autoclaving methods, which allowed to ensure the required sterility. Also, direct sterilization of the final HG-AgNPs product proved more effective than of the raw material, allowing simpler production procedures in non-sterile conditions. The mechanical properties were assessed in post mortem rat models and the HG-AgNPs were tested for its antimicrobial properties in vitro using extremely drug-resistant (XDR) clinical strains. The produced HG-AgNPs prove to be versatile, easy produced and cost-effective products, with activity against XDR strains and an adequate gelation time and spreadability features and optimal for in situ biomedical applications.


Applied Nano ◽  
2021 ◽  
Vol 2 (3) ◽  
pp. 242-256
Author(s):  
Mimi Liu ◽  
Anjuli Bhandari ◽  
Mujtaba Ali Haqqani Mohammed ◽  
Daniela R. Radu ◽  
Cheng-Yu Lai

Surface-enhanced Raman scattering has developed into a mature analytical technique useful in various applications; however, the reproducible fabrication of a portable SERS substrate with high sensitivity and good uniformity is still an ongoing pursuit. Reported herein is a rapid fabrication method of an inexpensive SERS substrate that enables sub-nanomolar detection of molecular analytes. The SERS substrate is obtained by application of silver nanoparticles (Ag NPs)-based ink in precisely design patterns with the aid of an in-house assembled printer equipped with a user-fillable pen. Finite-difference time-domain (FDTD) simulations show a 155-times Ag NP electric field enhancement for Ag nanoparticle pairs with particle spacing of 2 nm. By comparing the SERS performance of SERS substrate made with different support matrices and fabrication methods, the PET-printed substrate shows optimal performance, with an estimated sensitivity enhancement factor of 107. The quantitative analysis of rhodamine 6G absorbed on optimized SERS substrate exhibits a good linear relationship, with a correlation coefficient (R2) of 0.9998, between the SERS intensity at 610 cm−1 and the concentration in the range of 0.1 nM—1μM. The practical low limit detection of R6G is 10 pM. The optimized SERS substrates show good stability (at least one month) and have been effectively tested in the detection of cancer drugs, including doxorubicin and metvan.


2020 ◽  
Vol 8 (4) ◽  
pp. 1625-1629

Nanoparticles are used in various fields of science, especially medicine. Advent of nanotechnology has led to significant development in disease diagnosis, treatment and drug delivery. Silver nanoparticles (Ag-NPs) play an important role in medical application, which makes them a viable alternative to common antibiotics. Amongst various methods, synthesis of Ag-NPs via green method has the advantage of being cost effective with no toxic agent. In this study, Spherical shape Ag-NPs with average size of 30 nm were synthetized using Anethum graveolens leaf extract as a green, cost-effective, non-toxic and environment-friendly source. Transmission electron microscopy (TEM), particle size analysis (PSA) and Fourier transform infrared (FT-IR) were performed to characterize synthesized Ag-NPs. The antibacterial activity of the synthetized Ag-NPs was evaluated against gram positive and negative bacterial pathogens. The minimum inhibitory concentration (MIC) at different concentrations of Ag-NPs were used to evaluate their antibacterial properties against Staphylococcus aureus, Enterococcus faecalis, Escherichia coli, and Pseudomonas aeruginosa pathogens. The results exhibited a desirable antibacterial property of Ag-NPs, suggested its usage as putative antibacterial agents. Moreover, the anticancer effect of green synthesized Ag-NPs was evaluated against MCF-7 lines and results showed that the cell viability is depended on the concentration of Ag-NPs. In short, this method provides a simple, cost effective and eco-friendly way to synthesis Ag-NPs which can be used as a suitable alternative to common antibiotics that use hazardous chemical agents, additionally, with anticancer effects against MCF-7 cells.


2021 ◽  
Author(s):  
Chérif DRIDI ◽  
Zina Fredj ◽  
Maroua Moslah

Electrochemical detectionof serotonin (5-hydroxytryptamine 5-HT) is proposed for the first time using a cost effective and eco-friendly nanocomposite of AgNPs and rGO which is synthesized through in situ green reduction...


2018 ◽  
Vol 5 (7) ◽  
pp. 171436 ◽  
Author(s):  
Yang Yu ◽  
Lihe Yan ◽  
Mengmeng Yue ◽  
Huanhuan Xu

Reduced graphene oxide (rGO) functionalized with silver nanoparticles (Ag NPs) is prepared using a femtosecond laser ablation in liquids method. By ablating the mixed aqueous solutions of silver nitrate and graphene oxide (GO) using femtosecond laser pulses, Ag ions and GO are simultaneously reduced and well-dispersed Ag NPs supported on rGO are obtained. The effect of laser power, irritation time and Ag ion concentration on the optical property and morphology of the products are systematically studied. The nonlinear optical responses of the functionalized graphene are studied using a nanosecond Z-scan technique. The rGO hybrid shows an enhanced nonlinear absorption (NLA) effect compared with GO and rGO, and thus exhibits an excellent optical limiting (OL) property with very low activating threshold, which is estimated to be about 0.38 J cm −2 . The enhanced NLA effect in rGO hybrids makes it possible to fabricate solid-state optical limiter, improving the practicality of graphene materials in the OL area.


Sign in / Sign up

Export Citation Format

Share Document