scholarly journals Degradation of atrazine and bromacil in two forestry waste products

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Trevor K. James ◽  
Hossein Ghanizadeh ◽  
Kerry C. Harrington ◽  
Nanthi S. Bolan

AbstractThe persistence and degradation of two common herbicides, atrazine and bromacil in two organic media, wood pulp and sawdust were compared with two soils. The hypothesis tested was that herbicide degradation will be faster in high organic matter media compared to soil. Degradation of two herbicides was carried out in four different temperature regimes and in sterilised media. The degradation half-life (t½) was determined under above-mentioned conditions then compared to degradation in soil. The degradation as quantified by t½ of the herbicides was generally longer in both organic media. Although microbial degradation was an important factor in the mineralisation of these herbicides, overall, the pH of the media had a more profound effect on the desorption and subsequent degradation rate than the organic carbon content. The results of this study revealed that the hypothesis was only partially correct as organic matter content per se did not strongly relate to degradation rates which were mainly governed by pH and microbial activity.

2006 ◽  
Vol 63 (2) ◽  
pp. 187-193 ◽  
Author(s):  
Marcos Gervasio Pereira ◽  
Gustavo Souza Valladares ◽  
Lúcia Helena Cunha dos Anjos ◽  
Vinícius de Melo Benites ◽  
Ademar Espíndula Jr. ◽  
...  

Soil taxonomy systems distinguish mineral soils from organic soils based on the amount of soil organic carbon. Procedures adopted in soil surveys for organic carbon measurement are therefore of major importance to classify the soils, and to correlate their properties with data from other studies. To evaluate different methods for measuring organic carbon and organic matter content in Histosols and soils with histic horizons, from different regions of Brazil, 53 soil samples were comparatively analyzed by the methods of Walkley & Black (modified), Embrapa, Yeomans & Bremner, modified Yeomans & Bremner, muffle furnace, and CHN. The modified Walkley & Black (C-W & B md) and the combustion of organic matter in the muffle furnace (OM-Muffle) were the most suitable for the samples with high organic carbon content. Based on regression analysis data, the OM-muffle may be estimated from C-W & B md by applying a factor that ranges from 2.00 to 2.19 with 95% of probability. The factor 2.10, the average value, is suggested to convert results obtained by these methods.


2018 ◽  
Vol 189 (2) ◽  
pp. 9 ◽  
Author(s):  
Maxime Debret ◽  
Yoann Copard ◽  
Antonin Van Exem ◽  
Geneviève Bessereau ◽  
Frank Haeseler ◽  
...  

Organic matter studies find an echo within different topics such as biogeochemical cycles, processes occurring in continental surfaces, anthropogenic activities, climate science, earth and planetary sciences, etc. Today’s challenges include finding and developing the most appropriate method(s) supporting the differentiation and characterisation of various types of recalcitrant organic matter in modern environments. In this study, we focus on combustion residues and coals as these two types of organic matter contain a significant amount of so-called recalcitrant organic carbon (black carbon and fossil organic carbon). Both these materials are ubiquitous, broadly stem from the same living organisms and have similar polyaromatic structures. In this respect, we tested a spectrophotometry method, classically used for sedimentology, as a very fast method for preliminary investigations. Analyses were performed with a wide range of standards and referenced samples. The results discriminate three different spectral signatures related to the degree of transformation of organic matter related to the degree of aromaticity (i.e. carbonisation). Using calibration curves, total organic carbon content can be estimated in experimental mixes with mineral matter and in a real context using subsurface sample (Gironville 101 borehole, Paris Basin, France). This method has particularly high sensitivity to very low organic matter content and is shown to be promising for a rapid evaluation of the organic carbon content.


Geosciences ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 320
Author(s):  
Evgeniya Leushina ◽  
Timur Bulatov ◽  
Elena Kozlova ◽  
Ivan Panchenko ◽  
Andrey Voropaev ◽  
...  

The present work is devoted to geochemical studies of the Bazhenov Formation in the north of the West Siberian Petroleum Basin. The object is the Upper Jurassic–Lower Cretaceous section, characterized by significant variations in total organic carbon content and petroleum generation potential of organic matter at the beginning of the oil window. The manuscript presents the integration of isotopic and geochemical analyses aimed at the evaluation of the genesis of the rocks in the peripheral part of the Bazhenov Sea and reconstruction of paleoenvironments that controlled the accumulation of organic matter in sediments, its composition and diagenetic alterations. According to the obtained data, the sediments were accumulated under marine conditions with a generally moderate and periodically increasing terrigenous influx. The variations in organic matter composition are determined by redox conditions and terrigenous input which correlate with the eustatic sea level changes during transgressive/regressive cycles and activation of currents. Transgression is associated with an intensive accumulation of organic matter under anoxic to euxinic conditions and insignificant influence of terrigenous sources, resulting in the formation of rocks with oil-generating properties. During the regression periods, the terrigenous sedimentation increased along with the dissolved oxygen concentration, and deposits with low organic matter content and gas-generating properties were formed.


2021 ◽  
Author(s):  
Umrbek Sharipov ◽  
Martin Kočárek ◽  
Miroslav Jursík ◽  
Antonín Nikodem ◽  
Luboš Borůvka

Abstract This study focuses on the assessment of herbicide adsorption and degradation in three soils (Haplic Chernozem, Haplic Fluvisol, and Arenic Regozem) from different agricultural regions of the Czech Republic where sunflower is cultivated. Soil samples were used in laboratory batch sorption and degradation experiments for six herbicides commonly used on sunflower crops. The findings are used to examine the effect of soil and herbicide properties on adsorption and degradation, as well as to determine the possible relation between the two processes. The (Kf) sorption coefficient ranged from 1.07 to 135.37 cm3/n μg1-1/n g-1, and sorption increased in order: dimethenamid-p < pethoxamid < s-metolachlor < flurochloridone < aclonifen < pendimethalin. Sorption of all six herbicides was positively correlated with organic matter content (p < 0. 001), and cation exchange capacity (p < 0.001). pH was negatively correlated with the sorption of all six compounds (p < 0.001). Degradation rates of herbicides ranged from 0. 012 to 0. 048 day-1, which corresponding to (DT50) half-lives between 14 - 57 days respectively. The longer half-lives were always found in Haplic Fluvisol with higher organic matter content. Results showed that both adsorption and degradation of herbicides is mainly controlled by soil organic matter. A negative relationship was found between the sorption coefficient and the rate of degradation. It can be concluded that the Freundlich sorption coefficient (Kf) can be a good predictor for soil degradation of the studied herbicides.


PLoS ONE ◽  
2020 ◽  
Vol 15 (12) ◽  
pp. e0242980
Author(s):  
Tadeusz Paszko ◽  
Joanna Matysiak ◽  
Daniel Kamiński ◽  
Sylwia Pasieczna-Patkowska ◽  
Miłosz Huber ◽  
...  

The current laboratory adsorption study aimed at determination of the values of adsorption distribution coefficient (Kd) of bentazone in the profiles of Arenosols, Luvisols, and Cambisols, which are the most common arable mineral soils in Poland. The study attempted to identify the soil components that bind bentazone and the principal adsorption mechanisms of this compound as well as create a model capable of predicting its adsorption in soils. The Kd values determined in batch experiments after 24 h of shaking were very low, and ranged from 0.05 to 0.30 mL/g for the Ap horizon and 0 to 0.07 mL/g for subsoils. The results indicated that the anionic form of bentazone was adsorbed on organic matter, while in acidic soils the neutral form of bentazone was adsorbed on organic matter and sand. The detailed analyses of mineralogical composition revealed that the principal mineral that was responsible for the adsorption of bentazone was quartz, which content was strongly positively correlated with the sand fraction. In soils with pH < 5 and an organic carbon content of < 0.35%, quartz exhibited much greater affinity for the neutral bentazone form than organic matter. Fourier transform infrared photoacoustic spectroscopy analyses supported by computational methods have shown the most probable mechanisms behind the adsorption of bentazone on quartz. The created model, assuming the adsorption of bentazone on organic matter and on sand and using the spectrophotometrically determined dissociation constant of bentazone, very well explained the Kd variance in the 81 examined soils, while correctly predicting the adsorption based on soil properties described in the published data.


Weed Science ◽  
1979 ◽  
Vol 27 (5) ◽  
pp. 570-574 ◽  
Author(s):  
A. R. Putnam ◽  
Robert P. Rice

The influence of several environmental and edaphic factors on alachlor [2-chloro-2′,6′-diethyl-N-(methoxymethyl)acetanilide] selectivity in snap bean (Phaseolus vulgarisL.) was examined. Crop safety was consistently improved when alachlor was applied preplant incorporated as compared to surface preemergence treatment. Under field conditions, maximum injury occurred either when temperatures during germination were cool and rainfall was minimal, or when temperatures approached or exceeded 27 C and the soil was saturated. In the growth chamber, more damage occurred under low temperature regimes, although volatilization of alachlor from moist soil also produced injury under higher temperatures. Injury was less severe in soils high in organic matter content. Alachlor injury decreased after 5 cm of simulated rainfall were applied on a loamy sand.


1989 ◽  
Vol 3 (1) ◽  
pp. 190-197 ◽  
Author(s):  
Patrick J. Shea

Organic matter is the soil constituent most often associated with herbicide adsorption. Structural diversity makes humified organic material an ideal substrate for the adsorption of many pesticides, but variability in composition and distribution in situ complicates interpretation of its quantitative effect on adsorption. Variability in the adsorption distribution coefficient (KD) of a herbicide among soils often is due to differences in organic matter content and can be reduced by adjusting KDfor soil organic carbon content and computing the organic carbon partition coefficient (Koc). Koccan be estimated from the octanol-water partition coefficient (Kow) of organic compounds, but the correlation weakens as compound polarity increases. Kocalso can be correlated with aqueous solubility if a correction is made for the melting point of compounds that are solids at 25 C. Relative adsorption can be estimated from parachor and molecular connectivity indices; but corrections are needed for polar compounds, and correlations with KDor Kochave been variable. Such predictive methods may be useful for broad classification purposes, but accurate extrapolation generally requires site-specific adsorption measurements. Empirical models which accommodate the multiple regression of organic matter content and other soil properties such as clay content, pH, and cation exchange capacity on herbicide adsorption can increase accuracy, but interpretation may be restricted to a small number of sites.


2003 ◽  
Vol 75 (1) ◽  
pp. 77-80 ◽  
Author(s):  
LETICIA BURONE ◽  
PABLO MUNIZ ◽  
ANA MARIA S. PIRES-VANIN ◽  
MARCELO RODRIGUES

Analyses of organic matter content, organic carbon, nitrogen, sulfur and granulometric variables were performed on 101 surface sediment samples from Ubatuba Bay in order to investigate the spatial distribution of organic matter, its origin and the relationships among its components. The samples were obtained with a manual corer, from water depths between 1 and 15m during 5 cruises of the R/V "Veliger II'', two months apart. Pearson correlation, regression and Principal Component Analysis (PCA) statistical methods were used to analyze the data. Strong correlations between organic matter and fine sediment fractions were obtained. The PCA revealed at least two main sample groups that reflect the different environmental conditions prevalent in the bay. There is a simple linear relationship between organic carbon content and the organic matter content determined by the calcination technique. Taking into account that the analysis of organic matter content is less expensive and less time consuming than the analysis of organic carbon, the present method of estimation can be useful when fast evaluation of the organic carbon content is needed for samples from similar environments.


2021 ◽  
Author(s):  
Emily Dazé ◽  
Eunji Byun ◽  
Sarah A Finkelstein

Abstract Wetlands that develop peat are a globally significant pool of soil carbon. While some wetland types such as bogs and fens are well characterized by the consistent development of carbon-rich peat, swamps soils are more variable both in terms of their carbon densities and accretion rates. Subcategorizing swamps by forest type may be a useful way of understanding this variability. Here we provide a case study of carbon accumulation in two distinct forest stands of Greenock Swamp located in the Great Lakes – St Lawrence mixed forest region in Bruce County, Ontario, Canada: an Acer - Fraxinus (maple-ash) dominant stand (i.e., broad-leaved swamp) and a Thuja occidentalis (cedar) dominant stand (i.e., needle-leaved swamp). Organic matter and organic carbon contents were analyzed among seven Acer - Fraxinus soil cores and one Thuja occidentalis core collected from Greenock Swamp. The Acer - Fraxinus cores had peat depths ranging from 18-60 cm with a mean organic matter content of 54% and an organic carbon content of 34% of dry mass. The Thuja occidentalis swamp core had at least 4 m of almost homogeneous peat with a mean organic matter content of 89%. Radiocarbon dating indicates that the Acer - Fraxinus swamp accumulates peat episodically whereas the Thuja occidentalis swamp showed continuous peat accumulation since the Middle Holocene. Overall, both broad-leaved and needle-leaved swamps have important soil carbon stocks, and are prevalent wetland types in middle latitudes. Both need to be considered to fully represent the carbon pools and potential sink of temperate wetlands.


2021 ◽  
pp. 32-41
Author(s):  
Buji I.B. ◽  
Adamu I. ◽  
Magaji M.J. ◽  
Hayatu N.G. ◽  
Zubairu A.M. ◽  
...  

A semi-detailed survey was conducted to characterize some physical and chemical properties of soils of Teaching and Research Farm University of Maiduguri, Borno State. Three sites were selected on the basis of land forms and surface texture and their description were taken using two soil profile pits at each sites. The soils collected were subjected to laboratory analysis using standard procedure. The colour of the soils changes at both surface and subsurface layers within each layer due to reduction in organic matter content down the profile, majority of the topsoil layer were brown while light yellowish orange were found in the subsoil layer.The consistency of the soil changed from hard at the surface layers to soft at subsurface layers. Soil reaction ranged from6.72 to 7.36which is neutral to slightly alkaline at both surface and subsurface layer and the electrical conductivity shows no salinity effect at both surface and subsurface layers. Cation Exchange Capacacity ranged from 10.09 to 15.97 Cmol/kg which was very low. Organic carbon content was generally low to moderate which ranged from 0.2 to 0.60 % due to poor return in organic matter content. The soil texture of the surface and subsurface was predominately sandy loam. Sand content of P2 ranged from 537g/kg to 762 g/kg, silt ranged from 141 (P4) to 441 (P1) g/kg and clay from 72 (P2) and 147 (P4) g/kg. Available phosphorus and potassium tend to be low while sodium was high, magnesium showed to be medium to high, while calcium was also low to medium. Bulk density of the soils, increases with increase in depth and the hydraulic conductivity decreases with increase in depth. The chemical and physical properties of the soil are good for crop production except for sodium that is high, which need some management practices for optimum crop production and as such evaluation on the capability and suitability of the area should be conducted.


Sign in / Sign up

Export Citation Format

Share Document