scholarly journals Effect of memantine, an anti-Alzheimer’s drug, on rodent microglial cells in vitro

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Toru Murakawa-Hirachi ◽  
Yoshito Mizoguchi ◽  
Masahiro Ohgidani ◽  
Yoshinori Haraguchi ◽  
Akira Monji

AbstractThe pathophysiology of Alzheimer’s disease (AD) is related to neuroinflammatory responses mediated by microglia. Memantine, an antagonist of N-methyl-d-aspartate (NMDA) receptors used as an anti-Alzheimer’s drug, protects from neuronal death accompanied by suppression of proliferation and activation of microglial cells in animal models of AD. However, it remains to be tested whether memantine can directly affect microglial cell function. In this study, we examined whether pretreatment with memantine affects intracellular NO and Ca2+ mobilization using DAF-2 and Fura-2 imaging, respectively, and tested the effects of memantine on phagocytic activity by human β-Amyloid (1–42) phagocytosis assay in rodent microglial cells. Pretreatment with memantine did not affect production of NO or intracellular Ca2+ elevation induced by TNF in rodent microglial cells. Pretreatment with memantine also did not affect the mRNA expression of pro-inflammatory (TNF, IL-1β, IL-6 and CD45) or anti-inflammatory (IL-10, TGF-β and arginase) phenotypes in rodent microglial cells. In addition, pretreatment with memantine did not affect the amount of human β-Amyloid (1–42) phagocytosed by rodent microglial cells. Moreover, we observed that pretreatment with memantine did not affect 11 major proteins, which mainly function in the phagocytosis and degradation of β-Amyloid (1–42), including TREM2, DAP12 and neprilysin in rodent microglial cells. To the best of our knowledge, this is the first report to suggest that memantine does not directly modulate intracellular NO and Ca2+ mobilization or phagocytic activity in rodent microglial cells. Considering the neuroinflammation hypothesis of AD, the results might be important to understand the effect of memantine in the brain.

2019 ◽  
Author(s):  
Xin-chun Ye ◽  
Qi Hao ◽  
Wei-jing Ma ◽  
Qiu-chen Zhao ◽  
Wei-wei Wang ◽  
...  

Abstract Dendritic cell-associated C-type lectin-1 (Dectin-1) receptor has been reported to be involved in neuroinflammation in Alzheimer's disease and traumatic brain injury. The present study was designed to investigate the role of Dectin-1 and its downstream target spleen tyrosine kinase (Syk) in early brain injury after ischemic stroke using a focal cortex ischemic stroke model. Adult male C57BL/6J mice were subjected to a cerebral focal ischemia model of ischemic stroke. The neurological score, adhesive removal test and foot-fault test were evaluated on days 1, 3, 5 and 7 after ischemic stroke. Dectin-1, Syk, phosphorylated (p)-Syk, tumor necrosis factor-α (TNF-α) and inducible nitric oxide synthase (iNOS) expression was analyzed via western blotting in ischemic brain tissue after ischemic stroke and in BV2 microglial cells subjected to oxygen-glucose deprivation/reoxygenation (OGD/R) injury in vitro. The brain infarct volume and Iba1-positive cells were evaluated using Nissl’s and immunofluorescence staining, respectively. The Dectin-1 antagonist laminarin (LAM) and a selective inhibitor of Syk phosphorylation (piceatannol; PIC) were used for the intervention. Dectin-1, Syk, and p-Syk expression was significantly enhanced on days 3, 5 and 7 and peaked on day 3 after ischemic stroke. The Dectin-1 antagonist LAM or Syk inhibitor PIC decreased the number of Iba1-positive cells and TNF-α and iNOS expression, decreased the brain infarct volume and improved neurological functions on day 3 after ischemic stroke. In addition, the in vitro data revealed that Dectin-1, Syk and p-Syk expression was increased following the 3-h OGD and 0, 3 and 6 h of reperfusion in BV2 microglial cells. LAM and PIC also decreased TNF-α and iNOS expression 3 h after OGD/R induction. Dectin-1/Syk signaling plays a crucial role in inflammatory activation after ischemic stroke, and further investigation of Dectin-1/Syk signaling in stroke is warranted.


Genes ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1794
Author(s):  
Laura Ibanez ◽  
Justin B. Miller

Alzheimer’s disease is a complex and multifactorial condition regulated by both genetics and lifestyle, which ultimately results in the accumulation of β-amyloid (Aβ) and tau proteins in the brain, loss of gray matter, and neuronal death [...]


Cells ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 698
Author(s):  
Valérie Jolivel ◽  
Susana Brun ◽  
Fabien Binamé ◽  
Jérémie Benyounes ◽  
Omar Taleb ◽  
...  

Microglial cells are key players in neural pathogenesis and microglial function regulation appears to be pivotal in controlling neuroinflammatory/neurological diseases. Here, we investigated the effects and mechanism of action of neurosteroid allopregnanolone (ALLO) on murine microglial BV-2 cells and primary microglia in order to determine ALLO-induced immunomodulatory potential and to provide new insights for the development of both natural and safe neuroprotective strategies targeting microglia. Indeed, ALLO-treatment is increasingly suggested as beneficial in various models of neurological disorders but the underlying mechanisms have not been elucidated. Therefore, the microglial cells were cultured with various serum concentrations to mimic the blood-brain-barrier rupture and to induce their activation. Proliferation, viability, RT-qPCR, phagocytosis, and morphology analyzes, as well as migration with time-lapse imaging and quantitative morphodynamic methods, were combined to investigate ALLO actions on microglia. BV-2 cells express subunits of GABA-A receptor that mediates ALLO activity. ALLO (10µM) induced microglial cell process extension and decreased migratory capacity. Interestingly, ALLO modulated the phagocytic activity of BV-2 cells and primary microglia. Our results, which show a direct effect of ALLO on microglial morphology and phagocytic function, suggest that the natural neurosteroid-based approach may contribute to developing effective strategies against neurological disorders that are evoked by microglia-related abnormalities.


2021 ◽  
Vol 23 (1) ◽  
pp. 102
Author(s):  
Giulia Sierri ◽  
Roberta Dal Magro ◽  
Barbara Vergani ◽  
Biagio Eugenio Leone ◽  
Beatrice Formicola ◽  
...  

The cerebral synthesis of cholesterol is mainly handled by astrocytes, which are also responsible for apoproteins’ synthesis and lipoproteins’ assembly required for the cholesterol transport in the brain parenchyma. In Alzheimer disease (AD), these processes are impaired, likely because of the astrogliosis, a process characterized by morphological and functional changes in astrocytes. Several ATP-binding cassette transporters expressed by brain cells are involved in the formation of nascent discoidal lipoproteins, but the effect of beta-amyloid (Aβ) assemblies on this process is not fully understood. In this study, we investigated how of Aβ1-42-induced astrogliosis affects the metabolism of cholesterol in vitro. We detected an impairment in the cholesterol efflux of reactive astrocytes attributable to reduced levels of ABCA1 transporters that could explain the decreased lipoproteins’ levels detected in AD patients. To approach this issue, we designed biomimetic HDLs and evaluated their performance as cholesterol acceptors. The results demonstrated the ability of apoA-I nanodiscs to cross the blood–brain barrier in vitro and to promote the cholesterol efflux from astrocytes, making them suitable as a potential supportive treatment for AD to compensate the depletion of cerebral HDLs.


Author(s):  
George Tetz ◽  
Victor Tetz

Alzheimer’s disease is associated with prion-like aggregation of the amyloid β (Aβ) peptide and the subsequent accumulation of misfolded neurotoxic aggregates in the brain. Therefore, it is critical to clearly identify the factors that trigger the cascade of Aβ misfolding and aggregation. Numerous studies have pointed out the association between microorganisms and their virulence factors and Alzheimer’s disease; however, their exact mechanisms of action remain unclear. Recently, we discovered a new pathogenic role of bacterial extracellular DNA, triggering the formation of misfolded Tau aggregates. In this study, we investigated the possible role of DNA extracted from different bacterial and eukaryotic cells in triggering Aβ aggregation in vitro. Interestingly, we found that the extracellular DNA of some, but not all, bacteria is an effective trigger of Aβ aggregation. Furthermore, the acceleration of Aβ nucleation and elongation can vary based on the concentration of the bacterial DNA and the bacterial strain from which this DNA had originated. Our findings suggest that bacterial extracellular DNA might play a previously overlooked role in the Aβ protein misfolding associated with Alzheimer’s disease pathogenesis. Moreover, it highlights a new mechanism of how distantly localized bacteria can remotely contribute to protein misfolding and diseases associated with this process. These findings might lead to the use of bacterial DNA as a novel therapeutic target for the prevention and treatment of Alzheimer’s disease.


2021 ◽  
Author(s):  
Ayesha Murshid ◽  
Benjamin J Lang ◽  
Thiago J Borges ◽  
Yuka Okusha ◽  
Sachin P Doshi ◽  
...  

We have investigated the role of extracellular Heat shock protein 90 alpha (eHsp90α) in conferring protection of neuronal cells against fibrillary amyloid-beta (f-Aβ1-42) toxicity mediated by microglial cells. The formation of f-Aβ1-42 plaques leads to neurotoxic inflammation, a critical pathological feature of Alzheimer's Disease. We observed increased uptake and clearance of internalized f-Aβ1-42 by microglial cells treated with eHsp90α, an effect associated with activation of NRF2 (NF-E2-related factor 2) - mediated autophagy. eHsp90α thus mitigated the neuronal toxicity of f-Aβ1-42-activated microglia. In addition, eHsp90α facilitated f-Aβ1-42 engulfment by microglial cells in vitro. In summary, eHsp90α triggers NRF2-mediated autophagy in microglia and thus protects against the neurotoxic effects of f-Aβ1-42.


Author(s):  
Tingting Zhang ◽  
Yanyan Wang ◽  
Qin Xia ◽  
Zhiyi Tu ◽  
Jiajun Sun ◽  
...  

Cerebral ischemia/reperfusion (I/R) injury is a serious condition that leads to increased apoptosis of microglial and neurons in the brain. In this study, we identified that Cx43 expression level is significantly increased in the microglial cells during I/R injury. Using an in vitro model (hypoxia/reoxygenation-H/R injury), we observed that H/R injury leads to an increase in activation of microglial cells and increase in levels of pro-inflammatory markers such as IL-1β, IL-6, and TNF-α. Additionally, we could also observe significant increase in phosphorylation of Cx43 and Cav3.2 levels. To assess the role of H/R injured microglial cells on neuronal population, we cultured the neurons with conditioned media (MCS) from H/R injured microglial cells. Interestingly, we observed that microglial H/R injury significantly decreased Map2 expression and affected neuronal morphology. Further, we aimed to assess the effects of propofol on cerebral H/R injury, and observed that 40 μM propofol significantly decreased Cx43, Cx43 phosphorylation, and CaV3.2 levels. Additionally, propofol decreased apoptosis and increased Map2 expression levels in H/R injured neurons. Using silencing experiments, we confirmed that siCx43 could significantly improve the propofol’s rescue after H/R injury in both microglia and neurons. We further developed an in vivo MCAO (middle cerebral artery occlusion) rat model to understand the effect of propofol in I/R injury. Interestingly, propofol treatment and downregulation of Cx43 significantly decreased the infract volume and apoptosis in these MCAO rats. Thus, this study clearly establishes that propofol protects the brain against I/R injury through the downregulation of Cx43 in microglial cells.


Biology ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1359
Author(s):  
Deimantė Kulakauskienė ◽  
Deimantė Narauskaitė ◽  
Dovydas Gečys ◽  
Otilija Juknaitė ◽  
Lina Jankauskaitė ◽  
...  

Viral infections induce extracellular vesicles (EVs) containing viral material and inflammatory factors. Exosomes can easily cross the blood-brain barrier during respiratory tract infection and transmit the inflammatory signal to the brain; however, such a hypothesis has no experimental evidence. The study investigated whether exosome-like vesicles (ELVs) from virus mimetic poly (I:C)-primed airway cells enter the brain and interact with brain immune cells microglia. Airway cells were isolated from Wistar rats and BALB/c mice; microglial cell cultures—from Wistar rats. ELVs from poly (I:C)-stimulated airway cell culture medium were isolated by precipitation, visualised by transmission electron microscopy, and evaluated by nanoparticle analyser; exosomal markers CD81 and CD9 were determined by ELISA. For in vitro and in vivo tracking, particles were loaded with Alexa Fluor 555-labelled RNA. Intracellular reactive oxygen species (ROS) were evaluated by DCFDA fluorescence and mitochondrial superoxide—by MitoSOX. ELVs from poly (I:C)-primed airway cells entered the brain within an hour after intranasal introduction, were internalised by microglia and induced intracellular and intramitochondrial ROS production. There was no ROS increase in microglial cells was after treatment with ELVs from airway cells untreated with poly (I:C). In addition, poly (I:C)-primed airway cells induced inflammatory cytokine expression in the brain. The data indicate that ELVs secreted by virus-primed airway cells might enter the brain, cause the activation of microglial cells and neuroinflammation.


Author(s):  
Deimantė Kulakauskienė ◽  
Deimantė Narauskaitė ◽  
Dovydas Gečys ◽  
Otilija Juknaitė ◽  
Lina Jankauskaitė ◽  
...  

Viral infections induce exosomes containing viral material and inflammatory factors. During respiratory tract infection, exosomes can easily cross the blood-brain barrier and transmit the inflammatory signal to the brain; however, such a hypothesis has no experimental evidence. The study investigated whether exosomes from virus mimetic poly (I:C)-primed airway cells enter the brain and interact with brain immune cells microglia. Airway cells were isolated from Wistar rats and BALB/c mice; microglial cell cultures - from Wistar rats. Exosomes from poly (I:C)-stimulated airway cell culture medium were isolated by precipitation, visualised by transmission electron microscopy, and evaluated by nanoparticle analyser; exosomal markers CD81 and CD9 were determined by ELISA. For in vitro and in vivo tracking, exosomes were loaded with Alexa Fluor 555-labelled RNA. Intracellular reactive oxygen species (ROS) were evaluated by DCFDA fluo-rescence and mitochondrial superoxide - by MitoSOX. The exosomes from poly (I:C)-primed airway cells entered the brain within an hour after intranasal introduction, were internalised by microglia, and induced intracellular and intramitochondrial ROS production. There was no ROS increase in microglial cells was after treatment with exosomes from airway cells untreated with poly (I:C). The data indicate that virus-primed airway cell exosomes might enter the brain and induce the activation of microglial cells.


2001 ◽  
Vol 69 (1) ◽  
pp. 564-569 ◽  
Author(s):  
Karen R. Muñana ◽  
Susanne M. Vitek ◽  
Barbara C. Hegarty ◽  
Dorsey L. Kordick ◽  
Edward B. Breitschwerdt

ABSTRACT Bartonella henselae is known to cause central nervous system (CNS) disease in humans, and neurological signs have been observed in experimentally infected cats. However, the pathogenesis of CNS disease remains unclear. This study was undertaken to determine whether B. henselae infects feline fetal brain cells in vitro. Microglial-cell- and astrocyte-enriched cultures were inoculated with B. henselae. Giménez staining identified bacterial organisms within microglial cells by day 7 postinoculation. The viability of the intracellular bacteria was demonstrated by incubating cultures with gentamicin and plating cell lysate on agar. Electron microscopy identified intracellular organisms with characteristic Bartonella morphology but identified no ultrastructural abnormalities within infected microglial cells. No evidence of infection was seen in Bartonella-inoculated astrocyte cultures. These findings suggest a role for microglia in the pathogenesis of B. henselae-associated neurological disease.


Sign in / Sign up

Export Citation Format

Share Document